K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

Sửa đề: \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7

Ta có:

\(1961\text{≡}\left(mod7\right)\Rightarrow1961^{1962}\text{≡}1\left(mod7\right)\left(I\right)\)

Ta có:

\(3^6\text{≡}1\left(mod7\right)\Rightarrow\left(3^6\right)^{327}\text{≡}1\left(mod7\right)\)

\(\Rightarrow9.\left(3^6\right)^{327}\text{≡}9\text{≡}2\left(mod7\right)\Rightarrow3^{1964}\text{≡}2\left(mod7\right)\)

Mà \(1963\text{≡}3\left(mod7\right)\Rightarrow1963^{1964}\text{≡}3^{1964}\text{≡}2\left(mod7\right)\left(II\right)\)

Ta có: 

\(1965\text{≡}5\left(mod7\right)\Rightarrow1965^{1966}\text{≡}5^{1966}\left(mod7\right)\)

Mà ta lại có: \(\hept{\begin{cases}5^6\text{≡}1\left(mod7\right)\\5^4\text{≡}2\left(mod7\right)\end{cases}\Rightarrow}\left(5^6\right)^{327}.5^4=5^{1966}\text{≡}2\left(mod7\right)\)

\(\Rightarrow1965^{1966}\text{≡}5^{1966}\text{≡}2\left(mod7\right)\left(III\right)\)

Từ (I), (II), (III) thì ra suy ra:

\(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}\left(1+2+2+2\right)\left(mod7\right)\)

Hay \(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}7\text{≡}0\left(mod7\right)\)

Vậy \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7

9 tháng 3 2017

Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) Cộng lại ta có S ≡ 14 ≡ 0 (mod 7) Hay ta có đpcm

31 tháng 7 2017

d) Giải:

Ta có: \(\left\{{}\begin{matrix}2222\equiv-4\left(\text{mod }7\right)\\5555\equiv4\left(\text{mod }7\right)\end{matrix}\right.\)

\(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}\) \(+4^{2222}\)

\(\equiv-4+4=0\left(\text{mod }7\right)\)

\(\left(-4\right)^{5555}+4^{2222}=\left(-4\right)^{2222}\left(4^{3333}-1\right)\) \(⋮4^3-1=63⋮7\)

Vậy \(2222^{5555}+5555^{2222}⋮7\)

5 tháng 7 2018

a) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.\left(16-2\right)=2^{17}.14⋮14\)

b) \(10^6-5^7=5^6.2^6-5^7=5^6.\left(2^6-5\right)=5^6.\left(64-5\right)=5^6.59⋮59\)

1 tháng 3 2016

help me. gấp lắm ạ

thank you very much

25 tháng 9 2017

77+76+75-74=714

19 tháng 10 2016

77^6+7^5-7^4

=7^6.11^6+7^5-7^4

=7^4.7^2+7^4.7-7^4.1.11^6

=7^4.(7^2+7-1).11^6 chia hết cho 7

77^6+7^5-7^4 chia hết vì có số 7^4=7.7^3

30 tháng 7 2017

Ta có 2454.5424.210=(23.3)54.(33.2)24.210=2162.354.372.224.210=2196.3126=(2189.3126).27=7263.27chia hết cho 7263(vì 7263chia hết cho 7263) => đpcm

4 tháng 6 2017

Ta có: \(\overline{abb}=100a+10b+10b=100a+11b\)

=98a+2a +7b+4b

\(\text{a+2b }⋮7\) nên \(\text{2(a+2b)}⋮7\) hay \(2a+4b⋮7\)

Lại có \(98a⋮7\left(vì98⋮7\right)\)\(7b⋮7\) nên \(\text{98a+2a +7b+4b }⋮7\) hay \(\overline{abb}⋮7\)

4 tháng 6 2017

\(\overline{abb}=100a+10b+b\) nhé

28 tháng 10 2015

a) \(A=2^{17}.\left(2^3-1\right)=2^{17}.7\) chia hết cho 7

b) \(B=2^6.5^6+5^7=5^6.\left(2^6+5\right)=5^6.69\) chia hết cho 69

16 tháng 12 2015

55-54+53=53.52-53.5+53

=53(52-5+2=53.21

ta thấy có  thừa số 21 chia hết cho 7 nên 55-54+53 chia hết cho 7

16 tháng 12 2015

 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3 
=5^3(5^2-5+1)=5^3.21 
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7