K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

1.

\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)

\(\Rightarrow x\ge0\)

\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)

\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

7 tháng 10 2020

4.

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)

Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)

\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)

Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)

\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)

22 tháng 8 2016

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{3\left(x-1\right)\left(3x+3\right)}=\frac{3}{10}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)(Vì 3x + 3 lớn hơn 3x - 1 là 4 đơn vị)

\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)

\(\Rightarrow\frac{x+1-1}{3x+3}=\frac{3}{10}\)

\(\Rightarrow\frac{x}{3x+3}=\frac{3}{10}\)

\(\Rightarrow10x=3.\left(3x+3\right)\)

\(\Rightarrow10x=9x+9\)

\(\Rightarrow x=9\)

Vậy...

22 tháng 8 2016

thanks

12 tháng 9 2019

1 Tính : 

a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)

\(=\frac{1}{n}\)

b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)

\(=\frac{3}{5}+\frac{1}{n}\)

c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow C=1-B\left(1\right)\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

Lấy 2B trừ B ta có : 

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(B=1-\frac{1}{2^{10}}\left(2\right)\)

Thay (2) vào (1) ta có :

\(C=1-\left(1-\frac{1}{10}\right)\)

\(=1-1+\frac{1}{10}\)

\(=\frac{1}{10}\)

Vậy \(C=\frac{1}{10}\)

23 tháng 10 2016

a) \(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n^2+2n+1+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

=>đpcm

b) Từ công thức trên ta có:

\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

=> \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2010}-\frac{1}{2011}\right)\)

\(=2010+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\right)\)

\(2010+\left(1-\frac{1}{2011}\right)=2010+\frac{2010}{2011}=2010\frac{2010}{2011}\)

28 tháng 2 2016

\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{3x+3}=\frac{3}{10}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)

\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)

Nên 3x + 3 = 30

3x = 30 - 3 = 27

x = 27 : 3 = 9 

28 tháng 2 2016

4( 1/3.7 + 1/7.11 +...+1/(3x-1)(3x+3) = 3/10

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp

15 tháng 2 2017

1) a. Ta có:\(\frac{x+4}{2008}+\frac{x+3}{2009}=\frac{x+2}{2010}+\frac{x+1}{2011}\)

\(\Rightarrow\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)

\(\Rightarrow\frac{x+4+2008}{2008}+\frac{x+3+2009}{2009}=\frac{x+2+2010}{2010}+\frac{x+1+2011}{2011}\)

\(\Rightarrow\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)=\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)-\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)=0\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+2012=0\)

\(\Rightarrow x=-2012\)

Bài 2:

a.Ta có: \(\frac{x+2y}{18}=\frac{1+4y}{24}\)

\(\Rightarrow24x+48y=18+72y\)

\(\Rightarrow24x+48y-72y=18\)

\(\Rightarrow24x-24y=18\)

\(\Rightarrow24\left(x-y\right)=18\)

\(\Rightarrow x-y=\frac{3}{4}\)

\(\Rightarrow y=x-\frac{3}{4}\)

thay \(y=x-\frac{3}{4}\)vào \(\frac{1+4y}{24}=\frac{1+x+6y}{6x}\)ta được \(\frac{1+4\times\left(x-\frac{3}{4}\right)}{24}=\frac{1+x+6\times\left(x-\frac{3}{4}\right)}{6x}\)

giải ra ta được x=7

\(\Rightarrow y=7-\frac{3}{4}=\frac{25}{4}\)

b. Đẻ A mang giá trị nuyên

\(\Leftrightarrow9+3n⋮n-4\)

\(\Leftrightarrow3n-12+21⋮n-4\)

\(\Leftrightarrow3\left(n-4\right)+21⋮n-4\)

\(\Leftrightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:


n-4 1 -1 3 -3 7 -7 21

-21

n 5 4 7 1 11 -3 25 -17

Vậy \(n\in\left\{5;4;7;1;11;-3;25;-17\right\}\)thì A là số nguyên.

Thay n vào A và tính giá trị