Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì 12n+1 là số lẻ
và 30n+2 là số chẵn
nên 12n+1/30n+2 là phân số tối giản
lp 6 bt lm r
gọi UCLN(3n+1;5n+2)=d
ta có:
5n+2-(3n+1)=2n+2 chia hết cho d
5n+2-(2n+2)=3n chia hết cho d
3n+1-3n=1 chia hết cho d
=>d=1
=>3n+1 và 5n+2 là 2 số ng t cùng nhau
=>phân số trên là ph/số tối giản
Gọi \(ƯC\left(3n+1;5n+2\right)=d\left(d\in N\right)\)
\(\Rightarrow3n+1⋮d,5n+2⋮d\)
\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)
\(\Rightarrow15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Ước chung của tử và mẫu là 1 nên phân số \(\frac{3n+1}{5n+2}\) tối giản
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản
Vì 12n+1 là số lẻ
và 30n+2 là số chẵn
nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
hay 12n+1/30n+2 là phân số tối giản
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản
Bài 3:
\(\frac{3n+1}{5n+2}\)
Ta có : (3n +1) * 5 =15n + 5
(5n+2) *3 = 15n + 6
Mà : 15n + 6 - (15n + 5 ) =1
=>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)
a) Gọi ƯCLN(3n+1;5n+2) là d
ta có: 3n+1 chia hết cho d => 15n + 5 chia hết cho d
5n + 2 chia hết cho d => 15n + 6 chia hết cho d
=> 15n + 6 - 15n - 5 chia hết cho d
=> 1 chia hết cho d
=> 3n+1/5n+2 là phân số tối giản
gọi d là ƯC(3n + 1; 5n + 2) (d thuộc Z)
\(\Rightarrow\hept{\begin{cases}3x+1⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+1\right)⋮d\\3\left(5n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+5⋮d\\15n+6⋮d\end{cases}}}}\)
=> (15n + 5) - (15n + 6) ⋮ d
=> 15n + 5 - 15n - 6 ⋮ d
=> (15n - 15n) - (6 - 5) ⋮ d
=> 0 - 1 ⋮ d
=> 1 ⋮ d
=> d = 1 hoặc d = -1
vậy \(\frac{3n+1}{5n+2}\) là phân số tối giản với mọi n thuộc N
Gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3n+1\right)⋮d\\\left(5n+2\right)⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+5⋮d\\15n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+6\right)-\left(15n+5\right)⋮d\Rightarrow1⋮d\left(đpcm\right)\)