K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

a) Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

15 tháng 1 2018

Có : x^2+y^2+z^2+4x-2y-4z+10

= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1

= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1

=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z

15 tháng 1 2018

\(x^2+y^2+z^2+4x-2y-4z+10\)

\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)

\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)

Vì  \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\) 

\(\Rightarrow\)\(đpcm\)

23 tháng 8 2020

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

23 tháng 8 2020

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

22 tháng 10 2017

\(x^2+y^2+z^2+2x-2y-2z+3\)

\(=x^2+y^2+z^2+2x-2y-2z+1+1+1\)

\(=\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\)

\(=\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\)

Ta có :

\(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)

\(\left(y-1\right)^2\ge0\) với mọi y \(\in R\)

\(\left(z-1\right)^2\ge0\) với mọi z \(\in R\)

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) với mọi x,y,z \(\in R\)

Hay \(x^2+y^2+z^2+2x-2y-2z+3\ge0\) với mọi x,y,z là các số thực

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

30 tháng 10 2020

a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )

c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )