Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
Ta có:
\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
Mà:
\(x^2+1>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt vô nghiệm
Ta có \(\Leftrightarrow x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow x^4+x^2+x^3+x+x^2+1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\left(ktm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)
=> Pt vô nghiệm
đpcm.
\(x^4+x^3+x^2+x+1=0\)
\(\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Rightarrow x^5-1=0\)
\(\Rightarrow x^5=1\)
\(\Rightarrow x=1\)
Nhưng thay vào PT ko đúng nên PT vô nghiệm
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
x4-3x2+6x+13=0
<=>x4-4x2+4+x2+6x+9=0
<=>(x2-2)2+(x-3)2=0
Ta thấy x2-2 khác x-3
=>PT vô nghiệm
\(x^2-3x+12=0\)
\(\Rightarrow\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{39}{4}=0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{39}{4}=0\left(VLý\right)\)
Vậy PT vô nghiệm với mọi x∈R