Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(..........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) (có 100 số \(\frac{1}{200}\) )\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{2}\) (đpcm)
Ta có:
1/101>1/200
1/102>1/200
...
1/199>1/200
=>1/101+1/102+...+1/103>1/200+1/200+...+1/200(100 số 1/200)
=1/200.100=1/2
Vậy 1/101+1/102+1/103+...+1/200>1/2
HA ~~! Vẫn còn bài này !
1/101>1/150
1/102>1/150
1/103>1/150
....
1/150=1/150
Tất cả có 50 dữ kiện
Vậy 1/101+1/102+...+1/150>50/150=1/3 (1)
Tiếp theo
1/151>1/200
1/152>1/200
...
1/200=1/200
Tương tự trên, thì :
1/151+......+1/200>50/200=1/4 (2)
Cộng (1) và (2), thì A>(1/3+1/4)=7/12 \(\left(ĐPCM\right)\).
1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )
1/101+1/102+....+1/200(có 100 số )
Vì 1/101>1/200
1/102>1/100
......
1/199>1/200
1/200=1/200
=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số
=>1/101+1/102+.....+1/200>1/2
Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)
Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên :
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
mk viết nhầm: Chúng tó S không là số tự nhiên
Làm hộ mk nha, ai xong trc mk k cho.
Ta thấy tổng trên có 50 số hạng .
Ta có:
1/101>1/150
1/102>1/150
...
1/149>1/150
1/150=1/150
=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150
---50 số hạng 1/150-------
=>1/101+1/102+...+1/149+1/150>1/150.50
=>1/101+1/102+...+1/149+1/150>50/150
=>1/101+1/102+...+1/149+1/150>1/3
Ta có:
\(\frac{1}{101}\)>\(\frac{1}{200}\)
\(\frac{1}{102}\)>\(\frac{1}{200}\)
\(\frac{1}{103}\)>\(\frac{1}{200}\)
...
\(\frac{1}{200}\)=\(\frac{1}{200}\)
\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)
\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)