K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=n^3+17n=n\left(n+17\right)\)

Tích của 2 số cách nhau 17 đơn vị thì chia hết cho 6. Vậy B chia hết cho 6.

15 tháng 4 2019

B=n3+17n=n3-n+18n

vì 18n chia hết cho 6          (1)

=> ta phải chứng minh n3-n chia hết cho 6

ta có: n3-n=n(n2-1)=n(n-1)(n+1)

vì tích của 2 số tự nhiên liên tiếp chi hết cho 6               (2)

từ (1) và (2)=> B chia hết cho 6 

5 tháng 4 2017

Có:

A = 17n + 111...1

A = 17n + n - (111...1 - n)

A = 18n - n (111...1 - n)

Vì 111...1 và n đều có số dư bằng nhau nên 111...1 - n chia hết cho 9

\(\Rightarrow\) 17n + 111...1 chia hết cho 9.

Chúc bạn học tốt!ok

5 tháng 4 2017

7n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9

30 tháng 10 2016

A=18n-n+111...1

Số 111...1 có tổng các chữ số là 1+1+1+...+1=n(có n chữ số 1)

=> Suy ra 111....1-n chia hết cho 9

Mà 18n luôn chia hết cho 9

=>A=18n+111...1-n chia hết cho 9

6 tháng 1 2017

A=18n-n+111...1

Số 111...1 có tổng các chữ số là 1+1+1+...+1=n(có n chữ số 1)

=> Suy ra 111....1-n chia hết cho 9

Mà 18n luôn chia hết cho 9

=>A=18n+111...1-n chia hết cho 9

30 tháng 11 2015

Giả sử n = 1 , ta có:

A= 13 - 1.17

 = 1 - 17 = -16

Không chia hết cho 6 

24 tháng 12 2020

sai

ví dụ n>2

giả sử n=3

=>33-17.3=-24 chia hết cho 6

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

20 tháng 9 2018

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)

\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)

\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.