Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)
\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn
\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)
\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy 3n+10 và 3n+9 ntcn
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
a) Đặt \(\left(n+1,n+2\right)=d\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)=1⋮d\Rightarrow d=1\).
Suy ra đpcm.
b) Tương tự.
a) Đặt UCLN ( n+2; n+3 ) = d
=> n + 2 chia hết cho d ; n + 3 chia hết cho d
=> n + 3 - n - 2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n + 2 và n + 3 là 2 số nguyên tố cùng nhau
b) Đặt UCLN ( 2n+3 ; 3n+5 ) = d
=> 2n + 3 chia hết cho d; 3n + 5 chia hết cho d
=> 3 ( 2n + 3 ) chia hết cho d ; 2 ( 3n + 5 ) chia hết cho d
=> 6n + 9 chia hết cho d; 6n + 10 chia hết cho d
=> 6n + 10 - 6n - 9 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a, Gọi ƯCLN(n+1;n+2)=d
Suy ra n+1⋮d;n+2⋮d
Suy ra n+2-n-1⋮d
Suy ra 1⋮d hay d=1
Vậy ƯCLN(n+1;n+2)=1 (đpcm)
b, Gọi ƯCLN(3n+10;3n+9)=d
Suy ra 3n+10⋮d;3n+9⋮d
Suy ra 3n+10-3n-9⋮d
Suy ra 1⋮d hay d=1
Vậy ƯCLN(3n+10;3n+9)=1 (đpcm)
THANKS