K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Vẫn còn anh đợi tí nha

7 tháng 9 2019

a) Ta có: \(\frac{1}{2^2}>0\)

              \(\frac{1}{3^2}>0\)

               ..................

                 \(\frac{1}{2016}^2>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>0\)

Hay \(A>0\left(1\right)\)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

              ....................

             \(\frac{1}{2016^2}< \frac{1}{2015.2016}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< A< 1\)

\(\Rightarrow A\)không phải là STN ( đpcm )

b) \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{99}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)

8 tháng 5 2018

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.7}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

A<\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

A<\(\left[\left(\dfrac{1}{1}-\dfrac{1}{8}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(-\dfrac{1}{8}+\dfrac{1}{8}\right)\right]\)A<\(\left[\left(\dfrac{8}{8}-\dfrac{1}{8}\right)+0+0+0+0+0+0+0\right]\)

A<\(\dfrac{7}{8}< 1\)

Vậy ta có đpcm.

8 tháng 5 2018

Sorry nha, chỗ phân tích ra thành tống đại số phải như này :

A<\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

Rồi làm tương tự.

Mình cho bạn công thức nè :\(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)