Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n=2k(kEN)
thì n(n+13)=2k(2k+13)=4k2+26k(chia hết cho 2 vì các số hạng đều chia hết cho 2)
Nếu n=2k+1(kEN)
thì n(n+13)=(2k+1)(2k+1+13)=(2k+1)(2k+14)=2k(2k+14)+2k+14=4k2+28k+2k+14=4k2+30k+14(chia hết cho 2 vì các số hạng đều chia hết cho 2
Vậy với mọi nEN thì n(n+13) chia hết cho 2
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
Xét n sẽ có 3 dạng sau: 3k ; 3k+1 ; 3k+2 \(\left(k\inℕ\right)\)
Nếu n = 3k khi đó:
n(n+2)(n+7) = 3k(3k+2)(3k+7) chia hết cho 3
=> đpcm (1)
Nếu n = 3k+1 khi đó:
n(n+2)(n+7) = (3k+2)(3k+3)(3k+8) = 3(k+1)(3k+2)(3k+8) chia hết cho 3
=> đpcm (2)
Nếu n = 3k+2 khi đó:
n(n+2)(n+7) = (3k+2)(3k+4)(3k+9) = 3(k+3)(3k+2)(3k+4) chia hết cho 3
=> đpcm (3)
Từ (1),(2) và (3) => Với mọi số tự nhiên n thì n(n+2)(n+7) chia hết cho 3
=> đpcm
*Nếu n chẵn thì n(n+13) chẵn
=> n(n+13) chia hết cho 2
*Nếu n lẻ => n+13 chẵn
=>n(n+13) chẵn
=> n(n+13) chia hết cho 2
Vậy /............
Ta xét 2 trường hợp:
TH1: n là số chẵn
=> n chia hết cho 2
=> n. (n+13) chia hết cho 2
TH2: n là số lẻ
=> n + 13 là số chẵn ( lẻ + lẻ = chẵn)
=> n. (n + 13) chia hết cho 2
Từ 2 trường hợp trên thì ta kết luận n. (n + 13) chia hết cho 2 với mọi số tự nhiên n.
Với mọi số tự nhiên \(n\) thì \(n\) có dạng \(2k\) hoặc \(2k+1\)
+ Nếu \(n=2k\Rightarrow n⋮2\Rightarrow n\left(n+13\right)⋮2\)
+ Nếu \(n=2k+1\Rightarrow x+13=\left(2k+1\right)+13=2k+14=2\left(k+7\right)⋮2\)
\(\Rightarrow n+13⋮2\Rightarrow n\left(n+13\right)⋮2\)
Vậy mọi số tự nhiên \(n\)thì \(n\left(n+13\right)⋮2\)