Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{b}{d}=k\Leftrightarrow a=bk;b=dk\Leftrightarrow a=bk=dk^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{d}=\dfrac{dk^2}{d}=k^2\\\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{d^2k^4+d^2k^2}{d^2k^2+d^2}=\dfrac{d^2k^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=k^2\end{matrix}\right.\\ \LeftrightarrowĐpcm\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Đẳng thức đầu tiên sai:
Ví dụ: \(a=1;b=2;c=3;d=6\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)
Nhưng \(\dfrac{a.d}{c.d}\ne\dfrac{a^2-b^2}{b^2-d^2}\)
Với đẳng thức thứ 2:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)
hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Ta đặt : a/b = c/d = K ( K khác 0 )
=> a = b.K
c = d.K
Mà : a2 + b2 / c2 + d2 = b.K2 + b2 / d.K2 + d2
= b2 . ( K2 + 1 ) / d2 . ( K2 + 1 )
= b2 / d2 ( 1 )
Mà : ab/cd = b.K.b / d.K.d = b2 . K / d2 . K
= b2 / d2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : a/b =c/d ( ĐPCM )
Ta có: \(\frac{a}{b}=\frac{b}{d}\Rightarrow ad=b^2\)
Thay \(ad=b^2\), ta có
\(\frac{a^2+b^2}{b^2+d^2}=\frac{a^2+ad}{+ad+d^2}=\frac{\left(a+d\right)a}{\left(a+d\right)d}=\frac{a}{d}\)
Vậy\(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)khi\(\frac{a}{b}=\frac{b}{d}\)