Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
Ta có :
\(a^2+b^2+c^2+d^2+e^2\)
\(=\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\)
Ta lại có :
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\) \(\dfrac{a^2}{4}-ab+b^2\ge0\) \(\dfrac{\Rightarrow a^2}{4}+b^2\ge ab\)
Tương tự :
\(\dfrac{a^2}{4}+c^2\ge ac\)
\(\dfrac{a^2}{4}+d^2\ge ad\)
\(\dfrac{a^2}{4}+e^2\ge ae\)
\(\Rightarrow\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
theo bài ra ta có:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}\)
áp dụng tính chất dãy tỉ số bàng nhau ta có:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{c\left(a+b\right)}{a\left(c+d\right)}=\dfrac{b\left(c+d\right)}{d\left(a+b\right)}\\ \Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}\)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}=\dfrac{\left(ca+cb\right)-\left(bc+bd\right)}{\left(ca+ad\right)-\left(ad+bd\right)}=\dfrac{ca-bd}{ca-bd}=1\\ \Rightarrow ca+cb=ca+ad\\ \Rightarrow cb=ad\\ \Rightarrow ad=bc\left(đpcm\right)\)
Ta có:
\(AD>AB-BD\) (BĐT trong \(\Delta ABD\) ) \(\left(1\right)\)
\(AD>AC-CD\) (BĐT trong \(\Delta ACD\) ) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) cộng vế:
\(\Rightarrow2AD>AB-BD+AC-CD\\ \Rightarrow2AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
Tương tự, ta có:
\(AD< AB+BD\) (BĐT trong \(\Delta ABD\) ) \(\left(4\right)\)
\(AD< AC+CD\) (BĐT trong \(\Delta ACD\) ) \(\left(5\right)\)
Từ \(\left(4\right)\left(5\right)\), cộng vế:
\(\Rightarrow2AD< AB+BD+AC+CD\\ \Rightarrow2AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)
mà
\(AD>\dfrac{AB+AC-BC}{2}\left(cmt\right)\\ \Rightarrow\dfrac{AB+AC-BC}{2}< AD< \dfrac{AB+AC+BC}{2}\)
\(AD>AB-BD\\ AD>AC-CD\\ \Rightarrow2.AD>AB+AC-BC\\ \Rightarrow AD>\dfrac{AB+AC-BC}{2}\)
\(AD< AB+BD\\ AD< AC+CD\\ \Rightarrow2.AD< AB+AC+BC\\ \Rightarrow AD< \dfrac{AB+AC+BC}{2}\)
Akai Haruma, Nhã Doanh, Như, Phùng Khánh Linh, Đời về cơ bản là buồn... cười!!!, Trần Quốc Lộc, Phạm Nguyễn Tất Đạt, Mashiro Shiina, le thi hong van, ngonhuminh, Nguyễn Minh Hùng, đề bài khó wá, Nguyễn Thanh Hằng, kuroba kaito, lê thị hương giang, Nguyễn Huy Tú, Ace Legona, soyeon_Tiểubàng giải, Phương An, Võ Đông Anh Tuấn, Trần Việt Linh, Hoàng Lê Bảo Ngọc,...
Áp dụng bđt AM-GM ta có:
\(\dfrac{a^2}{4}+b^2\ge2\sqrt{\dfrac{a^2b^2}{4}}=\dfrac{2ab}{2}=ab\)
\(\dfrac{a^2}{4}+c^2\ge2\sqrt{\dfrac{a^2c^2}{4}}=\dfrac{2ac}{2}=ac\)
\(\dfrac{a^2}{4}+d^2\ge2\sqrt{\dfrac{a^2d^2}{4}}=\dfrac{2ad}{2}=ad\)
\(\dfrac{a^2}{4}+1\ge2\sqrt{\dfrac{a^2}{4}}=\dfrac{2a}{2}=a\)
Cộng theo vế: \(a^2+b^2+c^2+d^2+1\ge ab+ac+ad+a=a\left(b+c+d+1\right)\)Dấu "=" xảy ra khi: \(a=2;b=c=d=1\)
\(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4\ge4ab+4ac+4ad+4a\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4-4ab-4ac-4ad-4a\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-2ac+4c^2\right)+\left(a^2-4ad^2+4d^2\right)+\left(a^2-4a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2\ge0\) ( luôn đúng)
Dấu "=" xảy ra khi: a = 2; b = c = d = 1
Đoán xem???