K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

12 tháng 6 2016

\(VT=\left(ac\right)^2+\left(bc\right)^2+\left(ad\right)^2+\left(bd\right)^2\)

\(VP=\left(ac^2\right)+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+\left(bc\right)^2=\left(ac\right)^2+\left(bc\right)^2+\left(ad\right)^2+\left(bd\right)^2\)

\(VT=VP\)

12 tháng 6 2016

Ta sẽ biến đổi vế phải bằng vế trái : 

Ta có : 

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2c^2+b^2d^2+2abcd\right)+\left(a^2d^2+b^2c^2-2abcd\right)=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Vậy \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

8 tháng 7 2017

Ta có:

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=c^2.\left(a^2+b^2\right)+d^2.\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)=VT\)

Vậy \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)(đpcm)

Chúc bạn học tốt!!!

8 tháng 7 2017

cày sớm =))

20 tháng 8 2019

\(\left(a^2-b^2\right)\left(d^2-c^2\right)=\left(ad+bc\right)^2-\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2d^2-a^2c^2-b^2d^2+b^2c^2=a^2d^2+2adbc+b^2c^2-a^2c^2-2acbd-b^2d^2\)

\(\Leftrightarrow a^2d^2-a^2c^2-b^2d^2+b^2c^2=a^2d^2+b^2c^2-a^2c^2-b^2d^2\)

\(\Leftrightarrow-a^2c^2-b^2d^2+b^2c^2=b^2c^2-a^2c^2-b^2d^2\)

\(\Leftrightarrow-b^2d^2+b^2c^2=b^2c^2-b^2d^2\)

\(\Leftrightarrow b^2c^2=b^2c^2\)

15 tháng 8 2015

VP =(ac+bd)2+(ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2

=(a2c2+b2c2)+(b2d2+a2d2)

=c2.(a2+b2)+d2.(a2+b2)

=(a2+b2)(c2+d2)= VT ( điều phải chứng minh)

15 tháng 6 2017

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\Leftrightarrow0=0\)Có điều này đúng nên ta có đpcm đúng

15 tháng 6 2017

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+bc^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c