Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5(3n+2)=15n+10
3(5n+3)=15n+9
hai số 15n+9 và 15n+10 là hai số tự nhiên liên tiếp nên ng.tố cùng nhau
Gọi UCLN(2n+3,2n+5)=d
Ta có:2n+3 chia hết cho d
2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=>2 chia hết cho d
=>d={1,2}
Mà 2n+3 là số lẻ nên không chia hết cho 2
=>d=1
Vậy 2 số (2n+3) và (2n+5) nguyên tố cùn nhau với bất kì số tự nhiên n
Gọi UCLN(2n+3,2n+5)=d
Ta có:2n+3 chia hết cho d
2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=>2 chia hết cho d
=>d={1,2}
Mà 2n+3 là số lẻ nên không chia hết cho 2
=>d=1
Vậy 2 số (2n+3) và (2n+5) nguyên tố cùn nhau với bất kì số tự nhiên n
b: Vì 14n+10 là số chẵn
và 10n+7 là số lẻ
nên 14n+10 và 10n+7 là hai số nguyên tố cùng nhau
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Gọi 2 STN liên tiếp là a và a+1
Đặt ƯCLN(a, a+1) = d
Ta có : a chia hết cho d
a+1 chia hết cho d
=> (a+1) - a chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> a và a+1 nguyên tố cùng nhau
hay 2 STN liên tiếp bất kỳ luôn nguyên tố cùng nhau
Gọi a là ƯCLN ( n+3 ; 2n+5 ) ĐK( n thuộc N(ko biết ghi dấu thuộc)
Ta có n+3 chia hết cho a và 2n+5 chia hết cho a
Suy ra: 2(n+3) chia hết cho a và 2n+5 chia hết cho a
Suy ra: 2n+6 chia hết cho a
Suy ra: (2n+6)-(2n+5) chia hết cho a
Suy ra: 1 chia hết cho a
Suy ra: n+3 và 2n+5 là NTCN
Lời giải:
Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$
$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(12n+1, 30n+2)=1$
$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.
Gọi số thứ nhất là n,số thứ hai là n+1,ƯC(n,n+1) = a
Ta có : n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) ta đc :
n + 1 - n chia hết cho a
=> a = 1
=> ƯC(n,n+1)=1
=>n và n+1 là hai số nguyên tố cùng nhau
Gọi ƯCLN(5m+3;3m+2)=d (d nguyên) thì (5m+3) chia hết cho d và (3m+2) chia hết cho d.
Do đó: [5.(3m+2)-3.(5m+3)] chia hết cho d => (15m+10-15m-9) chia hết cho d=> 1 chia hết cho d mà d nguyên nên d=1 hoặc d=-1.
Chứng tỏ 5m+3 và 3m+2 nguyên tố cùng nhau.