Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a=11...1=\frac{10^{2008}-1}{9}\)
\(b=100...05=10...0+5=10^{2008}+5\)
\(\Rightarrow ab+1=\frac{\left(10^{2008}-1\right)\left(10^{2008}+5\right)}{9}+1\)
\(=\frac{\left(10^{2008}\right)^2+4.10^{2008}-5+9}{9}\)
\(=\left(\frac{10^{2008}+2}{3}\right)^2\)
\(\Rightarrow\sqrt{ab+1}=\sqrt{\left(\frac{10^{2008}+2}{3}\right)^2}=\frac{10^{2008}+2}{3}\)
Ta thấy:
\(10^{2008}+2=10...02⋮3\Rightarrow\frac{10^{2008}+2}{3}\in N\)
Hay \(\sqrt{ab+1}\) là số tự nhiên (Đpcm)
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
Đề bài của bạn sai nhé , phải là \(\left(n^2-1\right)⋮8\)
Giải như sau : Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N^{\text{*}}\right)\)
\(\Rightarrow n^2-1=\left(2k+1\right)^2-1=2k\left(2k+2\right)=4k\left(k+1\right)\)
Vì k(k+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2 => 4k(k+1) chia hết cho 4.2 = 8 hay \(n^2-1\) luôn chia hết cho 8 vói mọi n lẻ
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
\(55^{n+1}-55^n\)
\(=55^n.55-55^n.1\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì có 54 trong tích
=> 55n . 54 chia hết cho 54
=> Điều phải chứng minh
2008^n+1-2008^n=2008^n .2008-2008^n=2008^n(2008-1)=2008^n.2007
==>chia het 2007