Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-_- tận cùng bằng 0 thì cũng có thể là số chính phương mà
M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy M không phải là số chính phương
Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2
Vậy tổng là:
a2 + (a+1)2+ (a+2)2 + (a+3)2 + (a+4)2= 5a2+1+4+9+16=5a2+30
Gọi 5 số tự nhiên liên tiếp là n-2;n-1;n;n+1;n+2
Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2
=5n^2+10=5(n^2+2)
n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5
=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Chúc bạn học tốt.
Giả sử \(\sqrt{a}\) là một số hữu tỉ thì \(\sqrt{a}\)=\(\frac{m}{n}\) với (m,n)=1
Khi đó \(a^2=\frac{m^2}{n^2}\)
Vì a là số tự nhiên nên \(m^2⋮n^2\)
hay là \(m⋮n\) ( trái với điều kiện (m,n)=1)
=> ĐPCM
ta có: ak2 là một số chính phương
<=>\(\sqrt{k}=...\)
khi \(\sqrt{k}\) <=> k là một số thập phân bất kì có chu kì thì a theo \(\sqrt{k}\) thì a phải là một số vô tỉ
các bạn thấy mình giải có đúng ko
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM