Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UWCLN(2n+1,2n(n+1))=1
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\Rightarrow n\left(2n+1\right)⋮d\Rightarrow2n^2+n⋮d\\2n\left(n+1\right)⋮d\Rightarrow2n^2+2n⋮d\end{cases}}\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\Rightarrow2n⋮d\)
Mà\(2n+1⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Suy ra 2n+1 và 2n(n+1) nguyên tố cùng nhau hay phân số 2n+1/2n(n+1) tồi giản(đpcm)
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
giả sử d là UCLN của n+1 và 2n+3
=>n+1 chia het cho d
=> 2n+2 chia hết cho d
=> 2n+3 chia hết cho d
=>1 chia hết cho d=>d=1
UCLN (n+1;2n+3)=1
=>(n+1) : (2n+3) là phân số tối giản
=> (dpcm)
Gọi d là ƯCLN của n+1 và 2n+3
Ta có: 2.(n+1)=2n+2
Mà 2n+3 - 2n+2 =1 Hay 1 chia hết cho d=> ƯCLN (n+1;2n+3)=1
=> n+1/2n+3 là phân số tối giản
Đặt (n - 2021, n - 2022) = d \(\left(d\inℕ^∗\right)\)
=> \(\left\{{}\begin{matrix}n-2021⋮d\\n-2022⋮d\end{matrix}\right.\Rightarrow\left(n-2021\right)-\left(n-2022\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
do đó (n - 2021, n - 2022) = 1
=> \(\dfrac{n-2021}{n-2022}\) là phân số tối giản
Giải
Đặt \(\left(n+3,2n+5\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[2\left(n+3\right)\right]⋮d\\\left(2n+5\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[2n+6-2n-5\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{2n+5}\) là phân số tối giản (đpcm)
Gọi ƯC(n+2;2n+5) là d
Ta có :
n + 2 ⋮ d => 2( n + 2 ) ⋮ d => 2n + 4 ⋮ d (1)
2n + 5 ⋮ d (2)
Từ (1) và (2) ta có :
2n + 5 - 2n - 4 ⋮ d
<=> 1 ⋮ d
=> d thuộc Ư(1) = 1
=> d = 1
Vậy n + 2 và 2n + 5 có ước chung lớn nhất bằng 1 => n + 2 / 2n + 5 tối giản ( đpcm )
Giải
Ta phải chứng minh : \(\left(n+2,2n+5\right)=1\)
Đặt ( n + 2 , 2n + 5 ) = d
\(\Rightarrow\hept{\begin{cases}\left(n+2\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\)
\(\Rightarrow\left[2\left(n+2\right)\right]⋮d\)
\(\Rightarrow\left(2n+4\right)⋮d\)
\(\Rightarrow\left(2n+5\right)-\left(2n+4\right)⋮d\)
\(\Rightarrow2n+5-2n-4⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{n+2}{2n+5}\)tối giản với mọi n \(\inℤ\) \(\left(đpcm\right)\)
Gọi \(\left(2n+1,n\right)\) là \(d\).
Vì \(\left(2n+1,n\right)\) là \(d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-n⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\left(2n+1,n\right)=1\)
\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau
\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản (đpcm)
Đặt: ( 2n + 1 ; n ) = d
=> ( 2n + 1 - n ; n ) = d
=> (n + 1; n ) = d
=> ( n + 1 - n ; n ) = d
=> (1; n ) = d
=> d = 1
Như vậy: ( 2n + 1; n ) = 1 => 2n + 1; n là hai số nguyên tố cùng nhau
=> M là phân số tối giản