K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

D = 1 + 2 + 2^2 + ...+ 2^2019 ( có 2020 số hạng)     ( đề như z phải ko bn)

D = (1+2+2^2+2^3) + ...+ (2^2016+2^2017 +2^2018+2^2019) ( có 505 nhóm)

D = 15 + ...+ 2^2016.(1+2+2^2+2^3)

D = 15.(1+...+2^2016) chia hết cho 15

3 tháng 1 2019

Phong ơi, trong D không có dấu ba chấm!

29 tháng 10 2019

\(2^{2018}+2^{2019}+2^{2020}\)

\(=2^{2018}\left(1+2+4\right)\)

\(=2^{2018}.7⋮7\left(đpcm\right)\)

29 tháng 10 2019

Ta có : 22018 + 22019 + 22020 

= 22018. ( 1 + 2 + 2)

= 22018. ( 1 + 2 + 4 )

= 22018. 7 \(⋮\)7

Vậy : 22018 + 22019 + 22020 \(⋮\)7

23 tháng 10 2017

a) Vì 11^n =............1 ( bằng 1 số luôn có tận cùng là 1 )

=> 11^9+11^8+11^7+...........+1 = .....1 +........1+........+1 ( có tất cả 9 số 11 và 1 số 1 )

=> A sẽ có tận cùng là 0 ( vì có tất cả 10 số có tận cùng là 1)

=> A chia hết cho 5 ( dựa vào dấu hiệu nhận biết 1 số chia hết cho 5 )

b) B=2+2^2+.......+2^60

       =( 2+2^2)+(2^3+2^4)+........+(2^59+2^60)

       = 2x(1+2)+2^3+(1+2)+.......+2^59x(1+2)

        = 2x3+2^3x3+............+2^59x3

       =  3x ( 2 + 2^3 + ...........+ 2^59 )

=>B chia hết cho 3

Can you do next post ?

23 tháng 10 2017

a,64 b,62

31 tháng 7 2019

S=[2+2^2+2^3]+[2^4+2^5+2^6]+...+[2^2008+2^2009+2^2010] CHIA HẾT CHO 14

 SUY RA S CHIA HẾT CHO 14  

GIỮ LỜI NHA

31 tháng 7 2019

S = 2 + 22 + 23 + ... + 22010

    = (2 + 22 + 23) + (24 + 25 + 26) + ... + (22008 + 22009 + 22010)

    = 2(1 + 2 + 22) + 24(1 + 2 + 22) + ... + 22008(1 + 2 + 22)

    = 2.7 + 24.7 + ... + 22008. 7

    = 14 + 23.14 + ... + 22007.14

    = 14(1 + 23 + ... + 22007\(⋮\)14

26 tháng 10 2018

Mẫu câu a)!! những câu khác ko lm đc ib!

a) Ta có:

\(A=2+2^2+2^3+2^4+...+2^{2010}.\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{2009}.3\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

Ta có:

\(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{2008}.7\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

26 tháng 10 2018

b,\(B=3+3^2+3^3+3^4+...+3^{2010}.\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{2009}.4\)

\(=4.\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3+3^2+3^3+3^4+...+3^{2010}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{2008}.13\)

\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)

11 tháng 9 2016

a) \(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+....+2^{57}\left(2+2^2+2^3\right)\) 

\(A=14+2^3.14+...+2^{57}.14\)

\(A=14\left(1+2^3+...+2^{57}\right)\) chia hết cho 7

b) \(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{56}\left(2+2^2+2^3+2^4\right)\) 

\(A=30+2^4.30+...+2^{56}.30\)

\(A=30\left(1+2^4+...+2^{56}\right)\) chia hết cho 15

11 tháng 9 2016

Ta có: A = 2 + 2+ 2+.....+ 260

=> A = (2 + 22 + 23) + .... + (258 + 259 + 260)

=> A = 2.( 1 + 2 + 4 ) + .... + 258.(1 + 2 + 4)

=> A = 2.7 + .... + 258.7

=> A = 7.(2 + .... + 258)

7 tháng 9 2017

a, mình nghĩ là \(16^5+2^{15}\)

ta có : \(16^5=2^{20}\)

=>\(16^5+2^{15}=2^{20}+2^{15}\)

=\(2^{15}.2^5+2^{15}\)

\(=2^{15}.\left(2^5+1\right)\)

\(=2^{15}.33\)

mà \(2^{15}.33⋮33\)

\(=>16^5+2^{15}⋮33\)

7 tháng 9 2017

a)Ta thấy: 16^5=2^20

=> A=16^5 + 2^15

= 2^20 + 2^15

= 2^15.2^5 + 2^15

= 2^15(2^5+1)

=2^15.33

số này luôn chia hết cho 33 

b)

1 tháng 9 2015

a, S = 5+52+53+.....+52006

5S = 52+53+54+....+52007

4S = 5S - S = 52007-5

=> S = \(\frac{5^{2007}-5}{4}\)

b, Nếu chia hết cho 156 thì mik làm được còn 126 thì chịu

1 tháng 9 2015

Trong câu hỏi tương tự có đó bn.

**** cho mình đi.

22 tháng 2 2018

 ai trả lời nhanh hộ mik ai trả lời nhanh mình k đúng , chứ ngồi chờ từ hi nãy chán quá huhu