Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
Điều kiện: 3 x 2 + 7 x ≥ 0 3 x − 1 ≥ 0 ⇔ x ≥ 1 3 *
Với điều kiện trên, phương trình tương đương
Theo yêu cầu đề bài ta chọn nghiệm x = 3 + 5 2
Vậy a = 3 , b = 5 , c = 2 ⇒ S = a + b + c = 10
Đáp án cần chọn là: C
a) Gọi n=2k+1(k \(\in\) N*)
\(\Rightarrow\)n= (k2+2k+1) - k2 = (k+1)2 - k2 (1)
Mà k \(\in\) N*\(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k2 và (k+1)2 là 2 số chính phương liên tiếp (2)
Từ (1);(2)\(\Rightarrow\) đpcm
b) Gọi n=2k+1(k \(\in\) N*)
\(\Rightarrow\) n2=(2k+1)2=4k2+4k+1=4k(k+1)+1(1)
Lại có: k \(\in\) N* \(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k(k+1) \(⋮2\)
\(\Rightarrow4k\left(k+1\right)⋮8\) \(\Rightarrow\) 4k(k+1)+1 chia 8 dư 1(2)
Từ(1);(2)\(\Rightarrow\) n2 chia 8 dư 1 với mọi n là số tự nhiên lẻ