K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a)\(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(A=1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

Ta chứng minh bđt:\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)(1)

\(\Leftrightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Áp dụng\(\Rightarrow A\ge1+2+1=4\left(\text{đ}pcm\right)\)

b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(B=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)

\(B=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)

Áp dụng bđt (1)\(\Rightarrow B\ge2+2+2=6\left(\text{đ}pcm\right)\)

8 tháng 6 2016

a) đề sai à bạn 4/a+b chứ

8 tháng 6 2016

b)Theo BĐT Côsi:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)

Tương tự ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm. 

Đẳng thức xảy ra khi a = b = c

8 tháng 6 2016

a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra

b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

  \(\frac{ab}{c}+\frac{ac}{b}\ge2a\)

   \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng 2 vế của bất đẳng thức ta được :

\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)

=> bất đẳng thức cần chứng minh

8 tháng 6 2016

a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi

Giả sử  \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)

=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)

=>\(\left(a+b\right)\left(a+b\right)\) > 4ab

=>\(\left(a+b\right)^2-4ab\) > 0

=>\(a^2+2ab+b^2-4ab\) > 0

=>\(a^2-2ab+b^2\) > 0

=>\(\left(a-b\right)^2\) > 0

BĐT cuối luôn đúng với mọi a;b

=>điều giả sử là đúng,ta có đpcm

(*)đề sai nên Kiệt ko ra là phải

 

đề hình như sai

 

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

4 tháng 5 2018

\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))

Vậy BĐT đã được chứng minh