K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

\(\frac{a+b}{b}=\frac{kb+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)(1)

\(\frac{c+d}{d}=\frac{kd+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)(2)

Từ (1) và (2) => \(\frac{a+b}{b}=\frac{c+d}{d}\)=> đpcm

11 tháng 10 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

23 tháng 6 2021

mn ơi giúp mk với

12 tháng 12 2016

Ta có : \(ad=bc\)

=> \(\frac{a}{c}=\frac{b}{d}\)

\(ADTCDTSBN,tađược\):
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

= > \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

=> \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)

CÁC CẬU ƠI GIÚP MIK VS!!!!!!

19 tháng 10 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)

\(\frac{a+b}{b}=\frac{kb+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\)

\(\frac{c+d}{d}=\frac{kd+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)

Vậy: \(\frac{a+b}{b}=\frac{c+d}{d}\left(=k+1\right)\)

8 tháng 11 2017

\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]\)

\(=-\left(b+c\right)^2+\left(a+d\right)^2\)   ( 1 )

\(\left(a+b-c-d\right)\left(a-b+c-d\right)=\left(b-c\right)^2-\left(a-d\right)^2\)    ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 

\(b^2+2bc+c^2-a^2-2ad-d^2=a^2-2ad+d^2-b^2+2bc-c^2\)

\(4ad=4ac\Rightarrow ad=bc\)

\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)( đpcm )

9 tháng 4 2018

Mình nghĩ cái đề như này : 

Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Chứng minh : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

                                                                                                Giải 

Ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Do đó : 

\(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\)\(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) \(\left(1\right)\)

Lại có : 

\(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}\)

Do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) nên \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)  ( đpcm ) 

Vậy nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) thì \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

mk ghi sai đề: cho ab=b/c/c/d chứng minh (a+b+c/b+c+d)^3=a/d

2 tháng 8 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Suy ra : \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)1)

Mặt khác :  \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(2)

Từ (1) và (2) => \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Suy ra : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

2 tháng 8 2017

 Bạn có thể lm cách này nhỉ!? 

 Ta hoán đổi 2 trung tỉ rồi áp dụng tính chất dãy tỉ số bằng nhau từ \(\frac{a}{b}=\frac{c}{d}\), ta có: 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Hoán đổi 2 tỉ lệ thức \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\) thì ta được \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

^^