Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+2+2^2+....+2^{2016}=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+.....+\left(2^{2014}+2^{2015}+2^{2016}\right)\)\(=7.1+2^3.7+2^6.7+....+2^{2013}.7=7.\left(1+2^3+....+2^{2013}\right)\)
Chia hết cho 7
1+2+22+23+...+22006
=(1+2+22)+...+(22004+22005+22006)
=7+22004(1+2+22)
=7(1+...+22004) chia hết cho 7
=>đpcm
\(x^3\left(x^2-7\right)^2-36x=x^3\left(x^4-14x^2+49\right)-36x\)
=\(x^7-14x^5+49x^3-36x\)
=\(x^7-x^6+x^6-x^5-13x^5+13x^4-13x^4+13x^3+36x^3-36x\)
=\(x^6\left(x-1\right)+x^5\left(x-1\right)-13x^4\left(x-1\right)-13x^3\left(x-1\right)+36x\left(x^2-1\right)\)
=\(x\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)\)
=\(x\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]\)
=\(x\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)\)
đặt x^2 =a (a>=0) thì xét đa thức \(x^4-13x^2+36=a^2-13a+36\)
xét \(\Delta=b^2-4ac=169-4.36=25\)
\(\Delta>0\)→phương trình có 2 nghiệm riêng biệt là \(\left[\begin{array}{nghiempt}a_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{13+5}{2}=9\\a_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{13-5}{2}=4\end{array}\right.\)(t/m a>=0)
vậy bt ban đầu :\(x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)\left(x^2-9\right)\)
=\(\left(x-3\right)\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
Bạn học đồng dư thức chưa?
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm