K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

AM-Gm đyyyyy

Giả sử P đạt min khi x=a=z>0; b=y>0; c=t>0. Khi đó bx=bz=ay; cx=cz=at và ta nghĩ đến việc sử dụng BĐT AM-GM như sau:

\(abxy\le\frac{b^2x^2+a^2y^2}{2}\left(1\right);abyz\le\frac{a^2y^2+b^2z^2}{2}\left(2\right);aczt\le\frac{c^2z^2+a^2t^2}{2}\left(3\right);actx\le\frac{a^2t^2+c^2x^2}{2}\left(4\right)\)

Từ (1);(2); (3) và (4) suy ra:

\(abcxy\le\frac{c\left(b^2x^2+a^2y^2\right)}{2}\left(5\right);abcyz\le\frac{c\left(a^2y^2+b^2z^2\right)}{2}\left(6\right);abczt\le\frac{b\left(a^2z^2+a^2t^2\right)}{2}\left(7\right);abctx\le\frac{b\left(a^2t^2+c^2x^2\right)}{2}\left(8\right)\)

Cộng các bất đẳng thức (5) (6) (7) (8) theo vế ta được

\(abc=abc\left(xy+yz+zt+tx\right)\le\)\(\frac{c\left(b^2x^2+a^2y^2\right)+c\left(a^2y^2+b^2z^2\right)+b\left(a^2z^2+a^2t^2\right)+b\left(a^2t^2+c^2x^2\right)}{2}=\frac{\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2}{2}\)

tức \(\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2\ge2abc\left(9\right)\)

Như vậy để tìm minP cần tìm các số a,b,c theo tỉ lệ thích hợp sao cho hệ số x2;y2;t2 chia nhau theo tỉ lệ 5:4:1

\(\frac{b^2c+bc^2}{5}=\frac{2a^2c}{4}=\frac{2a^2b}{1}\)

Mặt khác, ta có bất đẳng thức xảy ra khi x=z=a;y=b;c=t mà theo giả thiết xy+yz+zt+tx=1 nên phải có ab+bc+ca+ac=1

Và như vậy ta đưa được bài toán về việc giải hệ phương trình \(\hept{\begin{cases}\frac{bc\left(b+c\right)}{5}=\frac{a^2c}{2}=2a^2b\\a\left(b+c\right)=\frac{1}{2}\end{cases}}\)(*)

Giải hệ này ta tìm được \(a=\frac{1}{\sqrt[4]{50}};b=\frac{1}{\sqrt[4]{200}};c=\frac{1}{\sqrt[4]{200}}\)khi đó bất đẳng thức (9) trở thành

\(10a^2b\left(x^2+z^2\right)+8a^2by^2+2a^2b^2t^2\ge2abc\)

\(\Rightarrow P=5x^2+5z^2+4y^2+t^2\ge\frac{2abc}{2a^2b}=\frac{c}{a}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

Vì vậy ta có đẳng thức xảy ra khi \(x=z=a=\frac{1}{\sqrt[4]{50}};b=y=\frac{1}{\sqrt[4]{200}};c=t=\frac{1}{\sqrt[4]{200}}\)

28 tháng 5 2019

\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)

\(=3+\frac{x^3+y^3+z^3}{2xyz}\)

\(\Rightarrow\)\(A\le3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\sqrt{\frac{2}{3}}\)

19 tháng 2 2017

Ta có:

\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)

\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow-6\le A\le6\) 

18 tháng 2 2017

min=-6 khi x=y=z=-2

max=6 khi x=y=z=2

gl !!

26 tháng 2 2019

UvU à nhầm u;v;w chứ @@

\(\left(x+y+z;xy+zx+yz;xyz\right)->\left(3u;3v^2;w^3\right)\)

ta can cm\(w\le\dfrac{u}{\sqrt[3]{2}}\) voi \(9u^2=12v^2\)

notethat: dieu kien da cho ko co \(w\) nen ta co the k,dinh rang co the tim dc gia tri lon nhat cua \(w^3\), xay ra khi 2 bien bang nhau. WLOg x=y

\(gt->z\left(z-4x\right)=0\)

+)z=0 bdt luon dung

+)z=4x ta cco bdt can cm \(5x+y\ge3\sqrt[3]{8x^2y}\)

\(\Leftrightarrow\left(5x+y\right)^3-\left(6\sqrt[3]{x^2y}\right)^3\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(125x^2-16xy-y^2\right)\ge0\)

\(\Leftrightarrow0\ge0\)

True af

26 tháng 2 2019

coi \(x^2+y^2+z^2=2xy+2yz+2xz\) la pt bac 2 an \(z\)

(delta,nhan chia cac thu....)

\(\left[{}\begin{matrix}z=x+y+2\sqrt{xy}\\z=x+y-2\sqrt{xy}\end{matrix}\right.\)

+)\(z=x+y-2\sqrt{xy}\). ta cần cm \(2\left(x+y-\sqrt{xy}\right)\ge3\sqrt[3]{2xy\left(x+y-2\sqrt{xy}\right)}\)

\(\left(\sqrt{x};\sqrt{y}\right)->\left(a;b\right)\) (cho gọn)

\(\left(2\left(a^2+b^2-ab\right)\right)^3-\left(3\sqrt[3]{2a^2b^2\left(a^2+b^2-2ab\right)}\right)^3\ge0\)

\(\Leftrightarrow2\left(a+b\right)^2\left(2a-b\right)^2\left(a-2b\right)^2\ge0\)

+)\(z=x+y+2\sqrt{xy}\) cũng cần cm

\(2\left(x+y+\sqrt{xy}\right)\ge3\sqrt[3]{2xy\left(x+y+2\sqrt{xy}\right)}\)

\(\left(\sqrt{x};\sqrt{y}\right)->\left(a;b\right)\)

\(\left(2\left(a^2+b^2+ab\right)\right)^3-\left(3\sqrt[3]{2a^2b^2\left(a^2+b^2+2ab\right)}\right)^3\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\left(2a+b\right)^2\left(a+2b\right)^2\ge0\)

NV
27 tháng 4 2020

Biểu thức B chỉ có max, ko có min:

Từ giả thiết suy ra \(y^2< 15;z^2< 20\)

\(25x^2+10xyz+20y^2+15z^2=300\)

\(\Leftrightarrow\left(5x+yz\right)^2=y^2z^2-20y^2-15z^2+300\)

\(\Leftrightarrow\left(5x+yz\right)^2=\left(15-y^2\right)\left(20-z^2\right)\le\frac{1}{4}\left(35-y^2-z^2\right)^2\)

\(\Leftrightarrow5x+yz\le\frac{1}{2}\left(35-y^2-z^2\right)\)

\(\Leftrightarrow10x\le35-\left(y+z\right)^2\Rightarrow x\le\frac{35-\left(y+z\right)^2}{10}\)

\(\Rightarrow B\le\frac{35-\left(y+z\right)^2}{10}+y+z=\frac{35-\left(y+z\right)^2+10\left(y+z\right)}{10}=\frac{60-\left(y+z-5\right)^2}{10}\le6\)

\(\Rightarrow B_{max}=6\) khi \(\left(x;y;z\right)=\left(1;2;3\right)\)

27 tháng 4 2020

Cảm ơn bạn

17 tháng 6 2015

ko biét thì đừng trả lời  

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)