Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/\(2020\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+y^2}\right)ápdụngBDT\)
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+z^2}\ge\dfrac{9}{2\left(x^2+y^2+z^2\right)}=\dfrac{9}{2\cdot2020}\)
\(ápdụngBĐTcosi\)
\(x^3+y^3+z^3\ge3xyz\)
\(\)=> VP\(\ge\) 9/2
Ta có : \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\)
Ta lại có : \(x^2+y^2\le2xy\Leftrightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\)
\(y^2+z^2\le2yz\Leftrightarrow\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\)
\(z^2+x^2\le2zx\Leftrightarrow\frac{y^2}{z^2+x^2}\le\frac{y^2}{2zx}\)
Cộng vế theo vế ta có :
\(\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)
\(\Leftrightarrow\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}+3\)
\(\Leftrightarrow\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^2+y^2+z^2}{2xyz}+3\)
\(\Rightarrowđpcm\)
Đặt \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\) \(\left(\text{*}\right)\)
Khi đó, ta cần chứng minh bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y,z\in Z^+\) và \(x^2+y^2+z^2=2\) \(\left(\alpha\right)\)
\(VP\left(\text{*}\right)=\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3\)
Ta có các bất đẳng thức quen thuộc đối với ba số \(x,y,z\in Z^+\) như sau:
\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
Áp dụng các bất đẳng thức trên cho \(VP\left(\text{*}\right)\) ta được:
\(VP\left(\text{*}\right)\ge\left(\frac{x^2}{y^2+z^2}+1\right)+\left(\frac{y^2}{x^2+z^2}+1\right)+\left(\frac{z^2}{x^2+y^2}+1\right)=\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}+\frac{2}{x^2+y^2}\) (theo \(\left(\alpha\right)\) )
Hay nói cách khác, \(VP\left(\text{*}\right)\ge VT\left(\text{*}\right)\)
Vậy, bđt \(\left(\text{*}\right)\) được chứng minh.
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=2\end{cases}\Leftrightarrow}\) \(x=y=z=\sqrt{\frac{2}{3}}\)
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{x^2+z^2}\)
\(=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng BĐT cô-si cho các cặp số thực không âm sau: x2 và y2 ; y2 và z2 ; x2 và z2 ta được:
\(x^2+y^2\ge2xy\Rightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\left(1\right)\)
Tương tự ta được: \(\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\left(2\right);\frac{y^2}{x^2+z^2}\le\frac{y^2}{2xz} \left(3\right)\)
Từ (1) và (2) và (3) suy ra: \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2xz}=3+\frac{x^3+y^3+z^3}{2xyz}\)
\(A=\sum\dfrac{x}{3-yz}\le\dfrac{x}{x^2+y^2+z^2-\dfrac{y^2+z^2}{2}}=\dfrac{2x}{x^2+3}\le\dfrac{x^2+1}{x^2+3}=1-\dfrac{2}{x^2+3}.\)
Ta co \(\dfrac{1}{x^2+3}+\dfrac{1}{y^2+3}+\dfrac{1}{z^2+3}\ge\dfrac{9}{3+9}=\dfrac{3}{4}.\)
=>\(A\le3-2.\dfrac{3}{4}=\dfrac{3}{2}\)
A max = 3/ 2 khi x =y =z =1
Lời giải:
Áp dụng BĐT AM-GM:
\(3xyz=x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow xyz\geq \sqrt[3]{x^2y^2z^2}\Rightarrow xyz\geq 1\)
Do đó: \(x+y+z\geq 3\sqrt[3]{xyz}\geq 3\sqrt[3]{1}=3\)
Khi đó, áp dụng BĐT Cauchy-Schwarz (hay vẫn gọi là Svac-so ) ta có:
\(\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\geq \frac{(x+y+z)^2}{y+2+z+2+x+2}=\frac{(x+y+z)^2}{x+y+2+6}\geq \frac{(x+y+z)^2}{3(x+y+z)}=\frac{x+y+z}{3}\geq \frac{3}{3}=1\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((x^2+y+z)(1+y+z)\geq (x+y+z)^2\Rightarrow x^2+y+z\geq \frac{(x+y+z)^2}{1+y+z}\)
\(\Rightarrow \sqrt{\frac{x^2}{x^2+y+z}}\leq \sqrt{\frac{x^2(1+y+z)}{(x+y+z)^2}}=\frac{x\sqrt{1+y+z}}{x+y+z}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow A\leq \frac{x\sqrt{1+y+z}+y\sqrt{1+x+z}+z\sqrt{x+y+1}}{x+y+z}\)
Áp dụng BĐT Cauchy-Schwarz:
\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)(xy+xz+x+yx+yz+y+zx+zy+z)\)
\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)[2(xy+yz+xz)+x+y+z]\) (1)
Theo BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x^2+y^2+z^2)(xy+yz+xz)\geq (xy+yz+xz)^2\)
\(\Rightarrow x+y+z\geq xy+yz+xz\) (2)
Từ \((1),(2)\Rightarrow (x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z).3(x+y+z)=3(x+y+z)^2\)
\(\Leftrightarrow x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1}\leq \sqrt{3}(x+y+z)\)
\(\Rightarrow A\leq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
Ta có: \(\dfrac{2}{x^2+y^2}=\dfrac{x^2+y^2+z^2}{x^2+y^2}=1+\dfrac{z^2}{x^2+y^2}\le1+\dfrac{z^2}{2xy}\)(bđt cosi)
CMTT: \(\dfrac{2}{y^2+z^2}\le1+\dfrac{x^2}{2yz}\); \(\dfrac{2}{z^2+x^2}\le1+\dfrac{y^2}{2xz}\)
=> \(\dfrac{2}{x^2+y^2}+\dfrac{2}{y^2+z^2}+\dfrac{2}{z^2+x^2}\le3+\dfrac{z^2}{2xy}+\dfrac{x^2}{2yz}+\dfrac{y^2}{2xz}=3+\dfrac{x^3+y^3+z^3}{2xyz}\) (Đpcm)
Ta có: 2x2+y2=x2+y2+z2x2+y2=1+z2x2+y2≤1+z22xy2x2+y2=x2+y2+z2x2+y2=1+z2x2+y2≤1+z22xy(bđt cosi)
CMTT: 2y2+z2≤1+x22yz2y2+z2≤1+x22yz; 2z2+x2≤1+y22xz2z2+x2≤1+y22xz
=> 2x2+y2+2y2+z2+2z2+x2≤3+z22xy+x22yz+y22xz=3+x3+y3+z32xyz2x2+y2+2y2+z2+2z2+x2≤3+z22xy+x22yz+y22xz=3+x3+y3+z32xyz ( Đpcm )