K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

1.a) (x+2)2-2(x+2)(x-8)+(x-8)2=[ (x+2)-(x-8) ]2=(x+2-x+8)2=102=100

b) (x+y-z-t)2-(z+t-x-y)2=(x+y-z-t+z+t-x-y)(x+y-z-t-z-t+x+y)

=0.-2(z+t-x-y)=0

26 tháng 9 2017

2. n3-n=n(n2-1)=n(n-1)(n+1)

Ta n(n-1)(n+1) là tích ba số nguyên tự nhiên

=>n(n-1)(n+1) chia hết cho 2 và 3

=>n(n-1)(n+1) chia hết cho 6

19 tháng 8 2017

Ta có

x2-yz=a

y2-zx=b

z2-xy=c

=>x3-xyz=ax

    y3-xyz=by

    z3-xyz=cz

=> x3+y3+z3-3xyz=ax+by+cz

Lại có

x3+y3+z3-3xyz

=(x+y)3-3x2y-3xy2+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)

19 tháng 8 2017

ak mình nhầm tẹo srr nha, đến chỗ

(x+y+z)(x2+y2+z2-xy-yz-zx)

Vì x2-yz=a, y2-zx=b, z2- xy=c

=>x2+y2+z2-xy-yz-zx=a+b+c

=>ax+by+cz=(x+y+z)(a+b+c)

=> DPCM

30 tháng 6 2016

a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B

Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.

b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)

2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi  a - 2b chia hết cho 5.

c) Tương tự: P = 3x2 - 10y = 13x2  - 10x2 - 10y = 13x2 - 10(x2 + y)

10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.

30 tháng 6 2016

b,Hướng dẫn: Xét A+b or A-B or mA+nB or mA-nB

8 tháng 10 2017

B1: Giải:

\(n^4+6n^3+11n^2+6n\)

= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)

= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)

= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)

= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)

= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)

= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)

= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)

Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)

Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.

Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)

31 tháng 3 2015

ta có 4x - 3y = 19x - 3.(5x + y) 

Vì 19x chia hết cho 19;

5x + y chia hết cho 19 nên 3(5x + y) chia hết cho 19

do đó 19x - 3(5x + y) chia hết cho 19 hay 4x - 3y chia hết cho 19

30 tháng 3 2015

vì 5x+y : 19 nên

5x:19 =>x:19=>4x:19(1)

y:19 =>3y:19 (2)

từ 1 và 2 ta có

4x-3y:19

(dấu : là chia hết)