K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

Ta có: (2x-3y)*3=(x+2y)*2 => 6x-9y=2x+4y => 6x-2x=9y+4y => 4x=13y =>y/x=13/4

30 tháng 9 2015

\(\frac{2x-3y}{x+2y}=\frac{2}{3}\)

=> 3.(2x-3y)=2.(x+2y)

=> 6x-9y=2x+4y

=> 6x-2x=4y+9y

=> 4x=13y

=> \(\frac{y}{x}=\frac{4}{13}\)

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

14 tháng 11 2016

Theo tính chất của tỉ lệ thuận có:

\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{2x_1}{2y_1}=\frac{3x_2}{3y_2}=\frac{2x_1-3x_2}{2y_1-3y_2}=\frac{42,5}{-8,5}=-5\)

=> x1 = -5.y1

Vậy 2 đại lượng x và y liên hệ với nhau bởi công thức x = -5.y

 

25 tháng 4 2018

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

tham khảo nhé

27 tháng 7 2016

Ta có:

\(\left(2x-3y\right).3=\left(x+2y\right).2\)

\(2x.3-3y.3=x.2+2y.2\)

\(6x-9y=2x+4y\)

\(6x-2x=9y+4y\)

\(4x=13y\)

Chia hai vế cho 4y, ta có:

\(\frac{4x}{4y}=\frac{13y}{4y}\)

\(=\frac{x}{y}=\frac{13}{4}\)

\(\Rightarrow\) Tỉ số giữa x và y là \(\frac{13}{4}\)

13 tháng 9 2016

Ta có:

\(\frac{2x-3y}{x+2y}=\frac{2}{3}\)

<=> 3(2x-3y)= 2(x+2y)

<=> 6x - 9y = 2x + 4y

<=> 6x - 2x = 9y+4y

<=> 4x = 13y

=> \(\frac{x}{y}=\frac{13}{4}\)

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined