K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

B = x + 1 / 3x + 4 

B = ( 3x+ 1 + 12x ) / 3x ( Quy đồng phân thức )

Để B đạt giá trị nhỏ nhất 

\(\Leftrightarrow\)3x2 + 12x + 1 đạt giá trị lớn nhất

Ta có : 

D = 3x2 + 12x + 1

D = 3 . ( x2 + 4x + 1 / 3 )

D = 3 . [ ( x2 + 2 . x . 2 + 22 - 22 + 1 / 3 ]

D = 3 . [ ( x + 2 )2 - 11 / 3 ]

D = ( x + 2 )2 - 11 \(\le\)- 11

Dấu " = " xảy ra \(\Leftrightarrow\)x + 2 = 0

                             \(\Rightarrow\)x        = - 2

Do đó : Max D = - 11 \(\Leftrightarrow\)x = - 2

Vậy : Min A = - 11 / [ 3 . ( - 2 ) ] = 11 / 6 \(\Leftrightarrow\)x = - 2 

#Chắc Thế Sai Thì Thôi#

NV
21 tháng 5 2019

\(A=x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow A_{min}=2\) khi \(x=1\)

b/ \(x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\)

\(B=x^2+\frac{1}{x}=x^2+\frac{1}{8x}+\frac{1}{8x}+\frac{3}{4x}\ge3\sqrt[3]{\frac{x^2}{64x^2}}+\frac{3}{4}.2=\frac{9}{4}\)

\(B_{min}=\frac{9}{4}\) khi \(x=\frac{1}{2}\)

c/

\(C=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=\frac{3}{\sqrt[3]{4}}\)

\(C_{min}=\frac{3}{\sqrt[3]{4}}\) khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)

d/

\(x\le\frac{1}{4}\Rightarrow\frac{1}{x}\ge4\Rightarrow\frac{1}{x^2}\ge16\)

\(D=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{128x^2}+\frac{127}{128x^2}\ge3\sqrt[3]{\frac{x^2}{2.2.128x^2}}+\frac{127}{128}.16=\frac{65}{4}\)

\(D_{min}=\frac{65}{4}\) khi \(x=\frac{1}{4}\)

9 tháng 11 2016

a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)

b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)

c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)

d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)

e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)

f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)

g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)

4 tháng 2 2016

nhiều quá bạn ơi , bạn k biết câu nào mình giải zúp cho 

4 tháng 2 2016

hết luôn đó bạn Ngọc Vi ... nhưng bạn giúp được câu nào thì mình cảm ơn

AH
Akai Haruma
Giáo viên
7 tháng 7 2017

Lời giải:

Đặt \((x,y,z)=(a+1,b+1,c+1)\Rightarrow a,b,c\geq 0\)

Ta có:

\(3x^2+4y^2+5z^2=52\Leftrightarrow 3(a+1)^2+4(b+1)^2+5(c+1)^2=52\)

\(\Leftrightarrow 3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(\Leftrightarrow 5(a+b+c)^2+10(a+b+c)=40+2a^2+b^2+10(ab+bc+ac)+4a+2b\)

\(\Rightarrow 5(a+b+c)^2+10(a+b+c)\geq 40\Leftrightarrow a+b+c\geq 2\)

Do đó \(x+y+z=a+b+c+3\geq 5\)

Vậy \(F_{\min}=5\Leftrightarrow x=y=1,z=3\)

16 tháng 3 2020

\(21,\frac{2}{x-1}\le\frac{5}{2x-1}\left(x\ne1;x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow\frac{2}{x-1}-\frac{5}{2x-1}\le0\)

\(\Leftrightarrow\frac{4x-2-5x+5}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

\(\Leftrightarrow\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

x -x+3 x-1 2x-1 VT -∞ +∞ 1/2 1 3 0 0 0 | | || | | || | | 0 - + + + + + - - - + + + + + + - -

Vậy \(\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\le0\Leftrightarrow x\in\left(\frac{1}{2};1\right)\cup[3;+\text{∞})\)

23,24 tương tự 21

\(25,2x^2-5x+2< 0\) (1)

Ta có: \(\left\{{}\begin{matrix}2x^2-5x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\a=2>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{2}< x< 2\)

\(26,-5x^2+4x+12< 0\)

\(\left\{{}\begin{matrix}-5x^2+4x+12=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{6}{5}\end{matrix}\right.\\a=-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -\frac{6}{5}\end{matrix}\right.\)

\(27,16x^2+40x+25>0\)

\(\left\{{}\begin{matrix}16x^2+40x+25=0\Leftrightarrow x=-\frac{5}{4}\\a=16>0\end{matrix}\right.\)

\(\Leftrightarrow x\ne-\frac{5}{4}\)

\(28,-2x^2+3x-7\ge0\)

\(\left\{{}\begin{matrix}-2x^2+3x-7=0\left(vo.nghiem\right)\\a=-2< 0\end{matrix}\right.\)

\(\Rightarrow-2x^2+3x-7< 0\) ∀x

=> bpt vô nghiệm

\(29,3x^2-4x+4\ge0\)

\(\left\{{}\begin{matrix}3x^2-4x+4=0\left(vo.nghiem\right)\\a=3>0\end{matrix}\right.\)

=> \(3x^2-4x+4>0\) => bpt vô số nghiệm

\(30,x^2-x-6\le0\)

\(\left\{{}\begin{matrix}x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\a=1>0\end{matrix}\right.\)

\(\Rightarrow-2\le x\le3\)