K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

cj MAi

7 tháng 8 2019

                                                               Bài giải

                        Ta có : \(P=\frac{a^2}{x}+\frac{b^2}{y}\) đạt GTNN khi \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN

             Mà \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN khi \(a^2\) và \(b^2\) cùng đạt giá trị nhỏ nhất 

                     \(\Rightarrow\text{ }a^2\text{ và }b^2=0\)

\(\Rightarrow\text{ }a,b=0\)

\(\text{Vì }0\) chia số nào cũng bằng 0 

\(\Rightarrow\text{ }GTNN\text{ của }P=0\)

28 tháng 4 2017

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\frac{\left(a+b\right)^2}{1}=\left(a+b\right)^2\)

Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\x+y=1\end{cases}}\Leftrightarrow...\) (tự tìm nha! Mình đang bận)

Vậy...

7 tháng 4 2018

tại sao 

\(\frac{a^2}{x^2}\)+\(\frac{b^2}{y^2}\)\(\ge\)\(\frac{\left(a+b\right)^2}{x+y}\)

14 tháng 4 2017

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

14 tháng 4 2017

a;b là hằng số dương mà bạn

16 tháng 1 2017

Câu hỏi của thanh tam tran - Toán lớp 7 - Học toán với OnlineMath

28 tháng 5 2017

\(x+y=1\Leftrightarrow x^2+2xy+y^2=1\)

mà \(x^2+y^2\ge2xy\Rightarrow x^2-2xy+y^2\ge0\)cộng vế với vế ta được

\(x^2+y^2\ge\frac{1}{2}\)

\(A=\frac{1}{X^2+y^2}+\frac{1}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{0,5}=6\)

\(A_{min}=6\)dấu = khi x=y= 1/2

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

2 tháng 7 2019

Cho mk lời giải đầy đủ đi

11 tháng 2 2018

Chứng minh Cái này :

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)

Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2

12 tháng 2 2020

A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)

Ap dung tinh chat day ti so bang nhau ta co

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)

=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x

(1)  suy ra \(y+z+1=2x\)

<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)

thay vao (*) => y+z=0

tu (1) lai suy ra \(x+z+1=2y\)

<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)

vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)

12 tháng 2 2020

b,     \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\) 

<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)

Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)