K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

a) Chữa đề: \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(Ta\text{ }có:\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AB}\\ =\overrightarrow{CB}+\overrightarrow{DA}+\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=\overrightarrow{CB}+\overrightarrow{DA}\)

\(\)\(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CA}+\overrightarrow{CB}+\overrightarrow{DC}\\ =2\overrightarrow{CM}+2\overrightarrow{NC}=2\left(\overrightarrow{NC}+\overrightarrow{CM}\right)=2\overrightarrow{NM}\)

Vậy \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(\text{b) }\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=-\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{CA}+\overrightarrow{CB}\right)\\ =-\left[\left(\overrightarrow{DA}+\overrightarrow{DB}\right)+\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\right]\\ =-\left(2\overrightarrow{DM}+2\overrightarrow{CM}\right)=2\left(\overrightarrow{MD}+\overrightarrow{MC}\right)=4\left(\overrightarrow{MN}\right)\)

\(\text{c) }2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{DA}\right)+\left(\overrightarrow{AI}+\overrightarrow{NA}\right)\right]\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{DB}\right)+\overrightarrow{NI}\right]=2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)\)

Mà IN là dường trung bình \(\Delta BCD\)

\(\Rightarrow\left\{{}\begin{matrix}IN//BD\\IN=\frac{1}{2}BD\end{matrix}\right.\Rightarrow\overrightarrow{IN}=\frac{1}{2}\overrightarrow{BD}\\ \Rightarrow2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)=2\left(\overrightarrow{DB}+\frac{1}{2}\overrightarrow{DB}\right)=2\cdot\frac{3}{2}\overrightarrow{DB}=3\overrightarrow{DB}\)

NV
13 tháng 1 2021

Chắc chắn là đề bài sai rồi

Vế trái là 1 đại lượng vô hướng

Vế phải là 1 đại lượng có hướng (vecto)

Hai vế không thể bằng nhau được

14 tháng 1 2021

Em viết nhầm ạ, vế phải đó là 

\(\overrightarrow{IJ}^2\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)G là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng

23 tháng 12 2020

1.

Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)

\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)

\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)

\(\Rightarrow k=4\)

23 tháng 12 2020

Gọi M là trung điểm IB

\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)

Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)

\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)

NV
23 tháng 2 2020

\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\)

b/

\(2\left(\overrightarrow{JA}+\overrightarrow{AB}+\overrightarrow{DA}+\overrightarrow{AI}\right)=2\left(\overrightarrow{JB}+\overrightarrow{DI}\right)=2\left(\overrightarrow{JD}+\overrightarrow{DB}+\overrightarrow{DB}+\overrightarrow{BI}\right)\)

\(=2\left(2\overrightarrow{DB}+\overrightarrow{IC}+\overrightarrow{CJ}\right)=2\left(2\overrightarrow{DB}+\overrightarrow{IJ}\right)=2\left(2\overrightarrow{DB}+\frac{1}{2}\overrightarrow{BD}\right)=3\overrightarrow{DB}\)c/

\(\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{BK}=\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{6}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\)

\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\frac{1}{5}\overrightarrow{BC}=\frac{6}{5}\left(\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\right)=\frac{6}{5}\overrightarrow{AK}\)

\(\Rightarrow A;K;H\) thẳng hàng

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {AC}  + \overrightarrow {BD} = \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {ND}  \\=  \left( {\overrightarrow {AM}  + \overrightarrow {BM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) \\=  \overrightarrow 0  + 2\overrightarrow {MN}  + \overrightarrow 0  = 2\overrightarrow {MN} \) (đpcm)                                                             

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

\(\)\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {ND} \)

\(\left( {\overrightarrow {BM}  + \overrightarrow {AM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} \)

Mặt khác ta có: \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {MN} \)

Suy ra \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

Cách 2: 

\(\begin{array}{l}
\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \\
\Leftrightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \\
\Leftrightarrow \overrightarrow {DC} = \overrightarrow {DC} (đpcm)
\end{array}\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Lời giải:

Ta có:

\(\overrightarrow{AI}+\overrightarrow{FA}=\overrightarrow{AB}+\overrightarrow{BI}+\overrightarrow{FD}+\overrightarrow{DA}=\overrightarrow{AB}+\overrightarrow{DA}+\frac{1}{2}(\overrightarrow{BC}+\overrightarrow{CD})\)

Suy ra \(\text{VT}=4(\overrightarrow{AB}+\overrightarrow{DA})+\overrightarrow{BC}+\overrightarrow{CD}\)

\(\Leftrightarrow{VT}=3\overrightarrow{DB}+\overrightarrow{AB}+\overrightarrow{DA}+\overrightarrow{BC}+\overrightarrow{CD}\)

\(\Leftrightarrow{VT}=3\overrightarrow{DB}+(\overrightarrow{AB}+\overrightarrow{BC})+(\overrightarrow{CD}+\overrightarrow{DA})\)

\(\Leftrightarrow{VT}=3\overrightarrow{DB}+\overrightarrow{AC}+\overrightarrow{CA}=3\overrightarrow{DB}=\text{VP}\)

Ta có đpcm