K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

từ tỉ lệ thức ta có:

4(3x-y)=3(x+y)

12x-4y=3x+3y

9x-4y=3y

9x=7y

x/y=7/9

13 tháng 7 2016

Ta có \(\frac{3x-y}{x+y}=\frac{3}{4}\)Suy ra 4(3x-y)=3(x+y)

=>12x-4y=3x+3y

=>12x-4y-3x=3y

=>12x-3x=3y+4y

=>9x=7y=>\(\frac{x}{y}=\frac{9}{7}\)

Nhớ k cho mik nha

10 tháng 10 2016

Mình làm rồi mà.

10 tháng 10 2016

Ta có: \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-y=3x+3y\)

\(\Rightarrow12x-3x=y+3y\)

\(\Rightarrow9x=4y\)

\(\Rightarrow\frac{x}{y}=\frac{4}{9}\)

\(\Rightarrow x=4;y=9\)

26 tháng 9 2017

ngu quá

28 tháng 12 2016

\(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\cdot\left(x+2\right)=2\cdot\left(y+3\right)\Leftrightarrow3x+6=2y+6\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)

Thay \(x=\frac{2y}{3}\)vào A ta được :

\(\frac{\left(\frac{2y}{3}\right)^2+y^2}{\frac{2y}{3}\cdot y}=\frac{\frac{4y^2}{9}+y^2}{\frac{2y^2}{3}}=\left(\frac{4y^2+9y^2}{9}\right)\cdot\frac{3}{2y^2}=\frac{13y^2}{9}\cdot\frac{3}{2y^2}=\frac{13}{6}\)

Chúc bạn thi tốt !

28 tháng 12 2016

x^2+y^2 >= 2xy => a>=2

dau =xay ra <=> x=y=0

\(\frac{2}{x+y}=\frac{3}{3x-y}\)

\(\Rightarrow2\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow6x-2y=3x+3y\)

\(\Rightarrow6x=3x+3y+2y\)

\(\Rightarrow3x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{3}\left(đpcm\right)\)

7 tháng 11 2018

ta có:

2/(x+y)=3/(3x-y)

=>(x+y)*(3/2)=3x-y

=>(3/2)x+(3/2)y=(6/2)x-(2/2)y

=>(3/2)y=(3/2)x-(2/2)y

=>(5/2)y=(3/2)x

=>5y=3x

=>x=(5/3)y

vậy:x/y=5/3

ko hiểu thì ? đừng t i c k sai nha!

10 tháng 10 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)

\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)

\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)

\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)

\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

21 tháng 7 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)

\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)

Vậy x = 27 ; y = 36 ; z = 45

21 tháng 7 2016

\(x+y=3\left(x-y\right)\)

\(\Rightarrow x+y=3x-3y\)

\(\Rightarrow y+3y=3x-x\)

\(\Rightarrow4y=2x\)

\(\Rightarrow2y=x\)

\(\Rightarrow x:y=2\)

\(\Rightarrow x+y=2y+y=2\)

\(\Rightarrow3y=2\)

\(\Rightarrow y=\frac{2}{3}\)

\(\Rightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)