Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ tỉ lệ thức ta có:
4(3x-y)=3(x+y)
12x-4y=3x+3y
9x-4y=3y
9x=7y
x/y=7/9
Ta có: \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-y=3x+3y\)
\(\Rightarrow12x-3x=y+3y\)
\(\Rightarrow9x=4y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{9}\)
\(\Rightarrow x=4;y=9\)
\(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\cdot\left(x+2\right)=2\cdot\left(y+3\right)\Leftrightarrow3x+6=2y+6\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)
Thay \(x=\frac{2y}{3}\)vào A ta được :
\(\frac{\left(\frac{2y}{3}\right)^2+y^2}{\frac{2y}{3}\cdot y}=\frac{\frac{4y^2}{9}+y^2}{\frac{2y^2}{3}}=\left(\frac{4y^2+9y^2}{9}\right)\cdot\frac{3}{2y^2}=\frac{13y^2}{9}\cdot\frac{3}{2y^2}=\frac{13}{6}\)
Chúc bạn thi tốt !
\(\frac{2}{x+y}=\frac{3}{3x-y}\)
\(\Rightarrow2\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow6x-2y=3x+3y\)
\(\Rightarrow6x=3x+3y+2y\)
\(\Rightarrow3x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{3}\left(đpcm\right)\)
ta có:
2/(x+y)=3/(3x-y)
=>(x+y)*(3/2)=3x-y
=>(3/2)x+(3/2)y=(6/2)x-(2/2)y
=>(3/2)y=(3/2)x-(2/2)y
=>(5/2)y=(3/2)x
=>5y=3x
=>x=(5/3)y
vậy:x/y=5/3
ko hiểu thì ? đừng t i c k sai nha!
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
x/y=7/9 là violympic fai ko.....mk ms lm xong
bn lm ơn giải chi tiết đc ko?