Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>BD=CE
b: Xét ΔAMH có
AE là đường cao, vừa là trung tuyên
=>ΔAMH cân tại A
=>AM=AH
Xét ΔAHN có
AD vừa là đường cao, vừa là trung tuyến
=>ΔAHN cân tại A
=>AH=AN=AM
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔAMH có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMH cân tại A
hay AM=AH(1)
c: Xét ΔANH có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔANH cân tại A
hay AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A
Xét \(\Delta\)BEC và \(\Delta\)CDB, có:
^ABC=^ACB (\(\Delta\)ABC cân tại A)
BC _ chung
^BEC=^BDC=900
=> \(\Delta\)BEC=\(\Delta\)CDB ( g.c.g )
=> BD=EC
Là ơn đi mình đang cần gấp TT^TT