K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Chọn C

Số tập hợp con gồm k phần tử của tập n phần tử là: C n k   => Số tập hợp con gồm 2 phần tử của tập hợp M là  C 10 2 .

24 tháng 4 2016

Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)

\(C_{18}^k\left(k=1,.....,18\right)\)

Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :

\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)

\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)

\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)

\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)

\(\Leftrightarrow17>2k\)

\(\Leftrightarrow k< \frac{17}{2}\)

Điều kiện (*) nên k = 1,2,3,.....8

Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17

Vậy ta có 

\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)

Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.

NV
14 tháng 4 2020

Số tập con 4 phần tử bằng 20 lần số tập con 2 phần tử

\(\Rightarrow C_n^4=20C_n^2\) \(\Rightarrow n=18\)

Số tập con gồm k phần tử: \(C_{18}^k\)

Để số tập con gồm k phần tử đạt max:

\(\Leftrightarrow\left\{{}\begin{matrix}C_{18}^k\ge C_{18}^{k+1}\\C_{18}^k\ge C_{18}^{k-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{18!}{\left(18-k\right)!.k!}\ge\frac{18!}{\left(17-k\right)!\left(k+1\right)!}\\\frac{18!}{\left(18-k\right)!k!}\ge\frac{18!}{\left(19-k\right)!\left(k-1\right)!}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+1\ge18-k\\19-k\ge k\end{matrix}\right.\) \(\Rightarrow k=9\)

NV
23 tháng 8 2020

\(y=\frac{2cos2x+2+3sin2x+1}{3-sin2x+cos2x}=\frac{2cos2x+3sin2x+3}{3-sin2x+cos2x}\)

\(\Leftrightarrow3y-y.sin2x+y.cos2x=2cos2x+3sin2x+3\)

\(\Leftrightarrow\left(y+3\right)sin2x+\left(2-y\right)cos2x=3y-3\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y+3\right)^2+\left(2-y\right)^2\ge\left(3y-3\right)^2\)

\(\Leftrightarrow7y^2-20y-4\le0\)

\(\Leftrightarrow\frac{10-8\sqrt{2}}{7}\le y\le\frac{10+8\sqrt{2}}{7}\)

\(\Rightarrow\left\{{}\begin{matrix}M=\frac{10+8\sqrt{2}}{7}\\m=\frac{10-8\sqrt{2}}{7}\end{matrix}\right.\) \(\Rightarrow7M-14m=24\sqrt{2}-10\)

NV
26 tháng 2 2020

\(lim\left(\frac{3n+2}{n+2}+a^2-4a\right)=lim\left(\frac{3+\frac{2}{n}}{1+\frac{2}{n}}+a^2-4a\right)=a^2-4a+3\)

\(\Rightarrow a^2-4a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\)

\(\Rightarrow S=4\)

22 tháng 2 2018

Đáp án D.

23 tháng 11 2019

Đáp ánC

Chọn 2 phần tử trong 10 phần tử khác nhau của tập hợp M có  C 10 2  cách chọn

24 tháng 1 2019

Đáp án C