Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
Số tập con 4 phần tử bằng 20 lần số tập con 2 phần tử
\(\Rightarrow C_n^4=20C_n^2\) \(\Rightarrow n=18\)
Số tập con gồm k phần tử: \(C_{18}^k\)
Để số tập con gồm k phần tử đạt max:
\(\Leftrightarrow\left\{{}\begin{matrix}C_{18}^k\ge C_{18}^{k+1}\\C_{18}^k\ge C_{18}^{k-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{18!}{\left(18-k\right)!.k!}\ge\frac{18!}{\left(17-k\right)!\left(k+1\right)!}\\\frac{18!}{\left(18-k\right)!k!}\ge\frac{18!}{\left(19-k\right)!\left(k-1\right)!}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+1\ge18-k\\19-k\ge k\end{matrix}\right.\) \(\Rightarrow k=9\)
\(y=\frac{2cos2x+2+3sin2x+1}{3-sin2x+cos2x}=\frac{2cos2x+3sin2x+3}{3-sin2x+cos2x}\)
\(\Leftrightarrow3y-y.sin2x+y.cos2x=2cos2x+3sin2x+3\)
\(\Leftrightarrow\left(y+3\right)sin2x+\left(2-y\right)cos2x=3y-3\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y+3\right)^2+\left(2-y\right)^2\ge\left(3y-3\right)^2\)
\(\Leftrightarrow7y^2-20y-4\le0\)
\(\Leftrightarrow\frac{10-8\sqrt{2}}{7}\le y\le\frac{10+8\sqrt{2}}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}M=\frac{10+8\sqrt{2}}{7}\\m=\frac{10-8\sqrt{2}}{7}\end{matrix}\right.\) \(\Rightarrow7M-14m=24\sqrt{2}-10\)
\(lim\left(\frac{3n+2}{n+2}+a^2-4a\right)=lim\left(\frac{3+\frac{2}{n}}{1+\frac{2}{n}}+a^2-4a\right)=a^2-4a+3\)
\(\Rightarrow a^2-4a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\)
\(\Rightarrow S=4\)
Đáp ánC
Chọn 2 phần tử trong 10 phần tử khác nhau của tập hợp M có C 10 2 cách chọn
Chọn C
Số tập hợp con gồm k phần tử của tập n phần tử là: C n k => Số tập hợp con gồm 2 phần tử của tập hợp M là C 10 2 .