K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

\(P=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}\)

Đặt \(c-\frac{b^2}{4a}=k.\)Do \(\left(x+\frac{b}{2a}\right)^2\ge0\)nên:

- Nếu a > 0 thì \(a\left(x+\frac{b}{2a}\right)^2\ge0\). Do đó \(P\ge k\)

min P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

- Nếu a < 0 thì \(a\left(x+\frac{b}{2a}\right)^2\le0\). Do đó \(P\le k\)

max P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

11 tháng 6 2019

Bài 1 undefined

11 tháng 6 2019

Bài 1 :

undefined

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

5 tháng 9 2020

Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...

a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)

\(=5x^3-4x-7\)

\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)

\(=13x^3-x^2+4x-5\)

b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)

c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

  \(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)

d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )