Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>MN=NE
b: Xét ΔNFP có
PM,FE là đường cao
PM cắt FE tại D
=>D là trực tâm
=>ND vuông góc FP
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
a) xét tam giác MND và tam giác END ta có
MN = EN
góc MND = góc END
ND: cạnh chung
suy ra tam giác MND = tam giác END
suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ
b) ta có tam giác MND = tam giác END suy ra MD = ED
xét tam giác DMK và tam giác DEP ta có
góc KMD = góc PED ( =90độ)
MD = ED
góc MDK = góc EDP( hai góc đối đinh)
suy ra tam giác DMK = tam giác DEP(đpcm)
c)ta có tam giác DMK = tam giác DEP suy ra MK=EP
ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP
xet tam giác KNDvà tam giác PND ta có
NK=NP
KND= PND
ND:cạnh chung
suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP
ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP
suy góc NDK = góc NDP =90độ
suy ra ND vuông góc với KP
a: NP^2=MN^2+MP^2
=>ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>DM=DE
a,Tam giác MNP vuông tại M
=> NP22=MN2+MP2( định lí pytago )
=> 102=62+MP2
=> MP2=100-36=64
=> MP=8cm
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
\(\widehat{MND}=\widehat{END}\)
Do đó: ΔNMD=ΔNED
b: Ta có; ΔNMD=ΔNED
=>DM=DE
Xét ΔDMF vuông tại M và ΔDEP vuông tại E có
DM=DE
\(\widehat{MDF}=\widehat{EDP}\)
Do đó: ΔDMF=ΔDEP
=>DF=DP
=>ΔDFP cân tại D
c: Ta có: ΔDMF=ΔDEP
=>MF=EP
ΔNMD=ΔNED
=>NM=NE
Ta có: NM+MF=NF
NE+EP=NP
mà NM=NE và MF=EP
nên NF=NP
=>N nằm trên đường trung trực của FP(1)
Ta có: DF=DP
=>D nằm trên đường trung trực của FP(2)
Ta có: KF=KP
=>K nằm trên đường trung trực của FP(3)
Từ (1),(2),(3) suy ra N,D,K thẳng hàng