Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
a) Vì tam giác MNP vuông tại M, nên MN là đường cao của tam giác và MH là đường trung tuyến. Do đó, MH = MN/2. Với giá trị của MN đã biết, bạn có thể tính được MH.
b) Khi kẻ HD vuông góc với MN tại D và HE vuông góc với MP tại E, ta có MDHE là hình chữ nhật. Vì MH là đường trung tuyến của tam giác MNP, nên MH = DE theo tính chất của đường trung tuyến.
c) Để chứng minh NH = 14,4 và PH = 25,6, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
d) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
e) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
g) Để chứng minh O là trực tâm của tam giác MNQ, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
Tứ giác AEHD là hình chữ nhật vì: A ^ = E ^ = D ^ = 90 o nên DE = AH.
Xét ABC vuông tại A có: A H 2 = HB.HC = 9.16 = 144 => AH = 12
Nên DE = 12cm
Đáp án cần chọn là: A
Tứ giác ARHD là hình chữ nhật vì: A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.
Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6
Nên DE = 6cm
Đáp án cần chọn là : D