Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra ^ADB=^AHB=90*
tương tự có ^AEC=90*
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
công vế với vế của (5) và (6) ta có BD+CE=BH+CH
hay BD+CE=BC
k mik nha bn
A B C E K I H
a)do AE//AC(gt) , mà AC \(⊥\) AB( và tg ABC vg tại A) nên BE \(⊥\)AB => ^EBA=90
xét tg HBE và tg BAE có ; ^BHE=^ABE =90 ; ^E chung
=> tg HBE \(\infty\) tg BAE (g.g)
b) xét tg ABE vuông tại B có: AB^2 +BE^2 =AE^2
=> 4^2 +BE^2 =5^2 => BE=3 (vì BE>0)
=> Diện tích tg ABE là \(\frac{1}{2}.AB.BE=\frac{1}{2}.4.3=6\left(cm^2\right)\)
xét tg ABI có: AH \(⊥\) BI (gt) và H là t/đ của BI (vì HB=HI)
=> tg ABI cân tại A => AH là đg pg của ^BAI hay AE là pg của ^BAK
=> \(\frac{BE}{AB}=\frac{EK}{AK}\). Mà \(\frac{BE}{AB}=\frac{3}{4}\Rightarrow\frac{EK}{AK}=\frac{3}{4}\)