Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có góc ABE bằng góc ACI vì cùng phụ với góc AEB
\(\Delta ABE=\Delta ACI\left(g.c.g\right)\) \(\Rightarrow\hept{\begin{cases}BE=CI\\AE=AI\end{cases}\Rightarrow AI=AD\left(=AE\right)}\) Suy ra A là trung điểm của DI
Mà AN sng song DM song song CI nên theo địnhlí về đường trung bình của hình thang suy ra MN=NC
a) tam giác BAC vuông tại A và tam giác BMN vuong tại M có: góc BAC=góc BMN
=> tam giác BAC đồng dạng tam giác BMN (g-g)
=> BA/BM=BC/BN=> BN=BM.BC/BA=18.20/12=30cm
b) tam giác PAN vuong tại A và tam giác PMC vuong tại M có
góc APN=góc MPC (đối đỉnh)
=> tam giác PAN đồng dạng tam giác PMC (g-g)
=> PA/PM=PN/PC
=> PA.PC=PM.PN (đpcm)
c) xét tam giác BNC có MN và AC là hai đường cao cắt nhau tại P
=> BP là đường cao thứ 3 kẻ từ B
=> BP vuong góc NC (đpcm)
Xin lỗi bạn, vì không rõ đề nên mình xin phép chỉ làm 1 câu a thôi vì mình chỉ biết rõ đề của câu đó
a) Xét ΔCDM vuông tại D và ΔCBA vuông tại B có
\(\widehat{C}\) chung
Do đó: ΔCDM∼ΔCBA(g-g)
Suy ra: \(\dfrac{CD}{CB}=\dfrac{CM}{CA}\)
hay \(CD\cdot CA=CB\cdot CM\)(đpcm)