K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 1 2021
a) Xét ΔACD và ΔAEB có
AD=AB(ΔABD đều)
\(\widehat{CAD}=\widehat{BAE}\left(=60^0+\widehat{BAC}\right)\)
AC=AE(ΔACE đều)
Do đó: ΔACD=ΔAEB(c-g-c)
⇒CD=BE(hai cạnh tương ứng)
a, Do tam giác ABD và ACE là tam giác đều nên ta có:
∠ABD = ∠ACE = 60°
∠BAD = ∠CAE = 60°
Do tam giác ABC vuông tại A nên ∠BAC = 90°. Từ đó suy ra ∠BAE = ∠CAD = 30°.
Vậy tam giác ABE và tam giác ADC đều là tam giác vuông cân tại A, do đó tam giác ABE = tam giác ADC.
b, Gọi H là giao điểm của AD và BE. Do tam giác ABE và tam giác ADC bằng nhau nên AH = AD.
Từ đó suy ra ∠BHE = ∠DHE. Do EH là đường cao của cả hai tam giác BHD và DHE nên tam giác BHE = tam giác DHE.
Vậy ta có DE = BE.