Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
Tam giác MBH nội tiếp đường tròn tâm I đường kính BH
=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ
Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N
=> ANH = 90 độ
TG NAMH có ANH = HMA = MAN = 90 độ
=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)
Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I
=> IMH = IHM (1)
Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)
Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ
=> MN vg IM
=> MN là tiếp tuyến đường tròn tâm I (*)
CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)
Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K