Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)
=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)
=> Δ AHB ∾ Δ CHA (cmt)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)
Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)
A B C D 4cm 6cm
amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)
Áp dụng tính chất của đường phân giác ,ta có:
\(\frac{DB}{DC}\)= \(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)
b,theo câu a ta có :
\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)
\(\Leftrightarrow DB=\frac{2.3}{3}\)
\(\Leftrightarrow DB=2\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{3}=\dfrac{2.8}{4}\)
\(\Leftrightarrow BD=\dfrac{2.8\cdot3}{4}=\dfrac{8.4}{4}=2.1\left(cm\right)\)
Vậy: BD=2,1cm
Bn có thể Kham Khảo ở chỗ này rất hiệu quả nè :
http://lazi.vn/edu/exercise/cho-tam-giac-abc-vuong-tai-a-co-ab-3cm-ac-4cm-duong-phan-giac-ad-duong-vuong-goc-voi-dc-cat-ac-o-e
nếu đúng thì cho mk nha
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
tam giác ABC vuông tại A=> BC^2=BA^2+AC^2 (Pitago)
=> BC^2=3^2+4^2
=> BC^2=25
=> BC= căn 25=5cn
tam giác ABC có AD là pg=> DB/DC=AB/AC
=> DB/DC=3/4=> DB/3=DC/4=DB+DC/3+4=BC/7=5/7
vậy DB=5/7.3=15/7cm,DC=5/7.4=20/7cm
Ta có: \(\frac{DB}{3}\)=\(\frac{DC}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{DB}{3}\)=\(\frac{DC}{4}\)=\(\frac{DB+DC}{3+4}\)=\(\frac{BC}{7}\)=\(\frac{5}{7}\)
=>DB=\(\frac{5}{7}\)x3=\(\frac{15}{7}\)
=>DC = BC-DB=\(\frac{20}{7}\)