Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: Giải:
Vì DE song song với BC => góc DIB= góc IBC (SLT).Mà góc IBC=góc DBI (BI là (p/g của góc ABC ) => góc DBI=góc DIB theo định lý => tam DIB cân tại D=>DB=DI.
Vì DE song song với BC=>góc EIC = góc ICB (SLT). Mà góc ECI =góc ICB ( CI là p/g của của góc ECB) theo định lý => tam giác IEC cân tại E=>EI=EC.
Vì DE=DB+IE. Mà DI = DB;IE=EC=>DE=DB+CE
Vậy : DE=DB+CE
a: Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-30^0=60^0\)
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: Ta có: ΔMAB đều
=>\(\widehat{MAB}=60^0\)
Ta có: \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>MA=MC
mà MB=MA
nên MB=MC
=>M là trung điểm của BC
=>\(AM=MB=\dfrac{1}{2}BC\)
c: Ta có: ΔMAC cân tại M
mà MD là đường phân giác
nên MD\(\perp\)AC
Ta có: MD\(\perp\)AC
AB\(\perp\)AC
Do đó: MD//AB
A B C H D E 30
a.Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
góc A+góc B+góc C=180
hay 90 +góc B+30=180
góc B=60 độ
Xét tgiac ABH và tgiac ADH có:
AH chung
góc AHB =góc AHD=90
HB=HD(gt)
Vậy tgiac ABH=tgiac ADH(c.g.c)
=> AB=AD(2 cạnh tương ứng)
=>tgiac ABD cân tại A mà có góc B=60 độ
Vậy tgiac ABD đều
b.tgiac ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tgiac ADC có góc DAC=góc DCA=30
Vậy tgiac ADC cân tại D=> AD=DC
Xét tgiacADH và tgiac CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tgiac ADH=tgiac CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
c.theo câu b ta có DE=DH(2 cạnh tương ứng)
Vậy tgiac DEH cân tại E
=> góc DEH=(180-góc EDH):2 (1)
tgiac DAC cân tại D
=> góc DAC=(180-góc ADC):2 (2)
mà gócADC=gócEDH(đối đỉnh) (3)
từ (1);(2) và (3) ta có góc DEH=góc DAC
mà góc DAC và góc DEH ở vị trí so le trong
Nên theo tiên đề oclit ta có HE//AC
cậu không giải bài giúp tôi thì cũng đừng cmt như thế
Gấp thì giúp đây ^_^ !!
+) Ta có : AM = BM ; M thuộc cạnh huyền BC
=> AM là đường trung tuyến ứng với cạnh huyền BC
=> AM = BM = MC
+) \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow90^o+30^o+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{C}=60^o\)
Xét tam giác AMC có :
\(\hept{\begin{cases}\widehat{C}=60^o\\AM=MC\end{cases}}\)
=> AMC là tam giác đều ( đpcm )