K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0

a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH<AH<AB

=>góc HAB<góc HBA<góc AHB

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

c: góc KAH=góc HAC

góc KHA=góc HAC

=>góc KAH=góc KHA

=>ΔAKH cân tại K

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trung điểm của AB

31 tháng 1 2019

a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM

suy ra 2 tam giác trên bằng nhau

hok tốt

1 tháng 2 2019

tu ve hinh : 

xet tamgiac ABM va tamgiac KBM co :  MB chung

goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)

AB = AK (gt)

=> tammgiac ABM = tamgiac KBM (c - g - c)

12 tháng 2 2020

A B C E D K H - - + + I

a) Xét △AHI và △ADI có:

AH = AD (gt)

AI: chung 

IH = ID (I: trung điểm HD)

=> △AHI = △ADI (c.c.c)

b) Xét △HAC có: HAC + AHC + HCA = 180o (định lí tổng ba góc △)

=> HAC = 180o - AHC - HCA

=> HAC = 180o - 90o - 30o

=> HAC = 60o (1)

Vì △AHI = △ADI => AH = AD (2 cạnh tương ứng) (2)

Từ (1) và (2) => △ADH đều

c) Vì △AHI = △ADI => IAH = IAD (2 góc tương ứng)

Hay KAH = KAD

Xét △AHK và △ADK có:

AH = AD (cmt)

KAH = KAD (cmt)

AK: chung

=> △AHK = △ADK (c.g.c)

=> AHK = ADK (2 góc tương ứng)

=> ADK = 90o

=> DK \(\perp\) AD (*)

Lại có BAD = 90o => AB \(\perp\) AD (**)

Từ (*) và (**) => AB // DK

d) Vì △HAD đều => HAD = 60o

Mà KAH = KAD (cmt) => KAD = 30o

Xét △KAD có: KAD = KCA (= 30o)

=> △KAC cân tại K

Mà KD \(\perp\)AC 

=> KD là đường cao △KAC cũng vừa là đường trung trực

Vậy khi đó thì DA = DC

Mà AH = AD => AH = DC

Lại có HA = HE và AH = DC => HE = DC

Xét △KEH và △KCD có:

EHK = CDK (= 90o)

KH = KD (△KAH = △KAD)

HE = DC (cmt)

=> △KEH = △KCD (2cgv)

=> EKH = CKD (2 góc tương ứng)

Có: EKH + EKC = 180o

=> CKD + CKE = 180o

=> EKD = 180o

=> E, K, D thẳng hàng

5 tháng 4 2020

quả trưng có trước hay con gà có trước

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0
28 tháng 2 2020

a, xét tam giác ABM và tam giác KBM có :BM chung

góc ABM = góc KBM do BM là pg của góc ABC (gt)

AB = BK (gt)

=> tam giác ABM = tma giác KBM (c-g-c)

b, tam giác ABM = tam giác KBM (Câu a)

=> góc MAB = góc MKB (đn)

góc MAB = 90

=> góc MKB = 90

xét tam giác EMA và tam giác CMK có : góc CMK = góc EMA (đối đỉnh)

MA = MK do tam giác ABM = tam giác KBM (câu a)

góc MAE = góc MKC  = 90

=> tam giác EMA = tam giác CMK (cgv-gnk)

=> MA = MC (đn)

=>  tam giác EMC cân tại M (đn)

c, tam giác ABC vuông tại A (gt) => góc ABC + góc ACB = 90 (đl)

góc ACB = 30 (gt)

=> góc ABC = 60  (1)

BA = BK (gt)

AE = CK do tam giác MEA = tam giác MCK (câu b)

AE + AB = BE

CK + KB = BC 

=> BE = BC

=> tam giác BEC cân tại B (đn) và (1)

=> tam giác BEC đều (dh)

28 tháng 2 2020

Bạn kẻ hình giùm mk nha

13 tháng 8 2020

a, xét tam giác ABM và tam giác KBM có :

BM chung
góc ABM = góc KBM do BM là pg của góc ABC (gt)
AB = BK (gt)
=> tam giác ABM = tam giác KBM (c-g-c)
b, tam giác ABM = tam giác KBM (Câu a)
=> góc MAB = góc MKB (đn)
góc MAB = 90
=> góc MKB = 90
xét tam giác EMA và tam giác CMK có :

góc CMK = góc EMA (đối đỉnh)
MA = MK do tam giác ABM = tam giác KBM (câu a)
góc MAE = góc MKC = 90
=> tam giác EMA = tam giác CMK (cgv-gnk)
=> MA = MC (đn)

=> tam giác EMC cân tại M (đn)
c, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (đl)
góc ACB = 30 (gt)
=> góc ABC = 60 (1)
BA = BK (gt)
AE = CK

do tam giác MEA = tam giác MCK (câu b)
AE + AB = BE
CK + KB = BC
=> BE = BC
=> tam giác BEC cân tại B (đn) và (1)
=> tam giác BEC đều (dh)

:)

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0