cho tam giác ABC vuông tại A có AB = AC, vẽ trung tuyến AM. Từ M kẻ MN vuông góc A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

Ta có:

  • AB = AC (tam giác ABC vuông tại A)
  • AM là trung tuyến của tam giác ABC (điểm M là trung điểm của BC)
  • MN vuông góc AC và MN = MH

Khi đó, ta có:

  • Tam giác ABM và ACM là hai tam giác cân (AB = AM và AC = AM), nên AM là đường trung trực của đoạn BM và đoạn CM.
  • Gọi I là giao điểm của đường thẳng MN và BC. Ta có MI là đường trung trực của đoạn BC.
  • Vì MN = MH nên tam giác MHN là tam giác cân tại M, nên đường trung trực của đoạn HN cũng là đường trung trực của đoạn BC, do đó đường trung trực của đoạn HN cũng cắt đường trung trực của đoạn BC tại I.

Do AM là đường trung trực của đoạn BM và đoạn CM, và MI là đường trung trực của đoạn BC, nên ta có AM và MI là hai đường trùng nhau, do đó A, M, I thẳng hàng.

Từ đó suy ra:

  • Góc AMB = góc AMC (do AM là đường trung trực của đoạn BM và đoạn CM)
  • Góc AHB = góc AHC (do AB = AC và HN là đối của MN)
  • Góc AMB + góc AHB = 90 độ (do MN vuông góc AC)
  • Góc AMC + góc AHC = 90 độ (do MN vuông góc AC)

Vậy ta có:

góc AMB + góc AHB = góc AMC + góc AHC

Do đó, tam giác AMB bằng tam giác AMC theo trường hợp góc - góc - góc của hai tam giác.

3 tháng 5 2023

- Vì AM là trung tuyến tam giác ABC (gt)
=> BM = CM (định nghĩa)
- Xét tam giác AMB và tam giác AMC, có: 
   + BM = CM (cmt)
   + AB = AC (gt)
   + Chung AM 
=> tam giác AMB = tam giác AMC (ccc)
- Vậy tam giác AMB = tam giác AMC theo trường hợp cạnh - cạnh - cạnh

Hình như đề bài thiếu nha bạn

15 tháng 11 2019

Tham khảo

Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath

15 tháng 11 2019

mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((

a: Xét ΔMCH và ΔMAE có 

MC=MA

\(\widehat{CMH}=\widehat{AME}\)

MH=ME

Do đó: ΔMCH=ΔMAE

b: Ta có: ΔMCH=ΔMAE

nên \(\widehat{MCH}=\widehat{MAE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên HC//AE

hay BC//AE

Ta có: ΔBAC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AH\(\perp\)BC

mà BC//AE

nên AH\(\perp\)AE

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)

 

4 tháng 2 2017

Hình thì Wii tự vẽ nhé.

1/ Ta có:\(AH⊥MN\) (giả thuyết)

AH là phân giác trong của  \(\widehat{A}\)(giả thuyết)

\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)

\(\Rightarrow\Delta MAN\)cân tại A

\(\Rightarrow MH=HN=\frac{MN}{2}\)

\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)

2/ Từ B kẽ BK // CN

\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)

\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)

\(\Rightarrow\Delta MBK\) cân tại B

\(\Rightarrow BM=BK\left(1\right)\)

Xét \(\Delta BKD\)và \(\Delta CND\)

\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)

\(BD=DC\)(gt)

\(\widehat{BDK}=\widehat{CDN}\)

\(\Rightarrow\Delta BKD=\Delta CND\)

\(\Rightarrow BK=CN\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BM=CN\)

3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)

Xét  \(\Delta FMN\)và \(\Delta MAI\)

\(FM=MA\)(gt)

\(\widehat{FMN}=\widehat{MAI}\)(theo 3)

\(MN=AI\)

\(\Rightarrow\Delta FMN=\Delta MAI\)

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: MA=2,5cm

MB<AB

=>góc BAM<góc AMB

c: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hbh

mà góc BAC=90 độ

nên ABNC là hcn

=>CN vuông góc CA