Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, áp dụng định lí pytago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+4^2=25\)
\(BC=\sqrt{25}=5\)
B, xét tam giác BAC và DCA có:
BM=MC
AM=MD
góc BMA= DMC (đối đỉnh)
=> Tam giác BAC=DCA
=>BA=DC
Góc BAM=MDC=>BA//DC(so le trong)
cho mk xin **** nah
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Tiếp ý c
mà CH = BK ( vì BKCH là hình bình hành)
Suy ra : BK = CI (2)
Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )
d) Giả sử GHCK là hình thang cân
Suy ra : Góc HCK = Góc GHC
mà góc HCK + góc C1 = 90 độ
góc GHC + góc C2 = 90 độ
Suy ra : Góc C1= góc C2
Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC
Suy ra : Tam giác ABC cân tại C
a ) BC = 13 cm
AM = 6,5 cm
b) ta có
tam giác ABC vuông tại A , AM là trung tuyến
nên BC = 2AM
mà D đối xứng với A qua M
nên AD = 2 AM
suy ra : BC =AM
c) để ABCD là hình vuông thì tam giác ABC phải vuông cân
a) Ap dung linh li pytago vao tam giac vuong ABC ta dc:
AB^2 + AC^2= BC^2
<=> 3^2+ 4^2=BC^2
<=>25=BC^2
<=> BC= 5 (cm)
b) Do AM la trung tuyen cua tam giac ABC nen: M la trung diem cua BC
Ta co: tam giac BAM = tam giac CDM (tu cm nha , c.g.c)
=> AB = CD
=> goc BAM = goc CDM
Ma 2 goc tren o vi tri so le trong nen AB // CD
c) Do AB//CD nen goc BAC = goc DCA (trong cung phia, tinh phep tinh ra nha)
Ta co: tam giac ABC = tam giac CDA (c.g.v-c.g.v, tu CM nha)
=> goc ACB = goc CAM
Do AB // CD (cmt), goc BAC= goc ACD= 90 do (cmt)
=> ABDC la hinh thang can
=> BC = AD
=> 1/2 BC = 1/2 AD
=> BM=AM
=> tam giac BAM, tam giac CDM can lan luot o M, M
=> goc BAM = goc ABM
Xet tam giac ABC co AB< AC nen goc ACB < goc ABC
Ma goc ACB = goc CAM, goc BAM = goc ABM nen goc BAM> goc CAM
_______________xong r ! chuc bn hoc tot ^^_____________
Bạn có thể vẽ hình được ko?