Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H(2;2) M E K(3;1) d :x+y-6=0 2 d :2x-y-2=0 1
Ta thấy ^EHK = ^EHM + ^KHM = ^BAE + ^CAM = ^BAC = 900
Đường thẳng HE: đi qua \(H\left(2;2\right)\), VTPT \(\overrightarrow{HK}\left(1;-1\right)\Rightarrow\) \(HE:x-y=0\)
Xét hệ \(\hept{\begin{cases}x-y=0\\x+y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}}\Rightarrow E\left(3;3\right)\)
Đường thẳng KE: đi qua \(K\left(3;1\right)\), VTCP \(\overrightarrow{KE}\left(0;2\right)\Rightarrow KE:\hept{\begin{cases}x=3\\y=1+2t\end{cases}}\)
Xét hệ \(\hept{\begin{cases}2x-y-2=0\\x=3\\y=1+2t\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\Rightarrow A\left(3;4\right)\)
Đường thẳng BC: đi qua \(H\left(2;2\right)\), VTPT \(\overrightarrow{HA}\left(1;2\right)\Rightarrow BC:x+2y-6=0\)(1)
Đường thẳng EB: đi qua \(E\left(3;3\right)\), VTPT \(\overrightarrow{KE}\left(0;2\right)\Rightarrow BE:y=3\)(2)
Đường thẳng KC: đi qua \(K\left(3;1\right)\), VTPT \(\overrightarrow{KE}\left(0;2\right)\Rightarrow KC:y=1\) (3)
Từ (1);(2) suy ra \(B\left(0;3\right)\), từ (1);(3) suy ra \(C\left(4;1\right)\)
Vậy \(A\left(3;4\right),B\left(0;3\right),C\left(4;1\right).\)
d:x+y-2=0 A B C I E(3;1) D(-2;1) P(2;1)
Ta dễ có tứ giác ABDE nội tiếp đường tròn đường kính AB => ^CDE = ^BAE
Lại có ^BAE = ^CAD (= 900 - ^ACB), suy ra ^CDE = ^CAD = 900 - ^ACD => DE vuông góc AC
Thấy D,E,P cùng có tung độ bằng 1 => D,E,P thẳng hàng, vì P thuộc AC nên DE vuông góc với AC tại P
Đường thẳng AC: đi qua P(2;1), VTPT \(\overrightarrow{DE}=\left(5;0\right)\) \(\Rightarrow AC:x-2=0\)
Xét hệ: \(\hept{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow A\left(2;0\right)\)
Đường thẳng BC: đi qua \(D\left(-2;1\right)\),VTPT \(\overrightarrow{DA}=\left(4;-1\right)\Rightarrow BC:4x-y+9=0\)
Xét hệ: \(\hept{\begin{cases}x-2=0\\4x-y+9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=17\end{cases}\Rightarrow C\left(2;17\right)}\)
Đường thẳng BE: đi qua \(E\left(3;1\right)\), VTPT \(\overrightarrow{AE}=\left(1;1\right)\Rightarrow BE:x+y-4=0\)
Xét hệ: \(\hept{\begin{cases}4x-y+9=0\\x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}\Rightarrow B\left(-1;5\right)\)
Vậy \(A\left(2;0\right),B\left(-1;5\right),C\left(2;17\right)\).
Gọi \(A_1\) và \(A_2\) lần lượt là điểm đối xứng A qua \(d_1\) và \(d_2\Rightarrow\left\{{}\begin{matrix}A_1\left(4;3\right)\\A_2\left(\frac{7}{5};\frac{24}{5}\right)\end{matrix}\right.\)
Với B bất kì thuộc d1 và C bất kì thuộc d2, ta luôn có \(\left\{{}\begin{matrix}AB=A_1B\\AC=A_2C\end{matrix}\right.\)
\(\Rightarrow T=AB+BC+AC=A_1B+BC+CA_2\ge A_1A_2\)
\(\Rightarrow T_{min}=A_1A_2\) khi \(A_1;B;C;A_2\) thẳng hàng hay B, C lần lượt là giao điểm của đường thẳng \(A_1A_2\) và d1; d2
\(\overrightarrow{A_1A_2}=\left(-\frac{13}{5};\frac{9}{5}\right)\Rightarrow A_1A_2\) có 1 vtpt là \(\left(9;13\right)\)
Phương trình A1A2:
\(9\left(x-4\right)+13\left(y-3\right)=0\Leftrightarrow9x+13y-75=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}y=x\\9x+13y-75=0\end{matrix}\right.\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}y=2x\\9x+13y-75=0\end{matrix}\right.\)