K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2022

Mình nghĩ phải là \(HB.HC=4OE^2\) mới đúng.

Dễ thấy tứ giác AEHF là hình chữ nhật do có \(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^o\)

Do đó \(EF=AH\) (2 đường chéo của hình chữ nhật thì bằng nhau) và \(AH=EF=2OE\) (do 2 đường chéo của hình chữ nhật cắt nhau tại trung điểm mỗi đoạn)

Tam giác ABC vuông tại A có đường cao AH nên \(HB.HC=AH^2\) \(\Rightarrow HB.HC=\left(2OE\right)^2=4OE^2\) (đpcm)

29 tháng 7 2022

HE vuông góc vs AB nha giúp mik vs 

27 tháng 4 2018

A B C O H D E F

Ta có: Tứ giác ABDC nội tiếp đường tròn (O) => ^DBC=^CAD (1)

Đường tròn (O) có đường kính AD và điểm B thuộc (O) => ^ABD vuông tại B => AB \(\perp\)BD

=> HE // BD (Quan hệ song song vuông góc) => ^DBC=^BHE (So le trong)

^BHE=^BAH (Cùng phụ ^AHE) => ^DBC=^BAH=^EAH.

Dễ thấy tứ giác AEHF là tứ giác nội tiếp (Tâm là trung điểm của AH)

=> ^EAH=^EFH. Mà ^EAH=^DBC (cmt) => ^EFH=^DBC (2)

Từ (1) và (2) => ^CAD=^EFH 

Lại có: ^EFH+^AFE=900 ; ^CAD+^ADC=900 => ^AFE=^ADC

=> ^CAD+^AFE=900 => AD\(\perp\)EF (đpcm)

12 tháng 8 2023

loading...  

ABC vuông tại A có AH là đường cao

⇒AH² = HB . HC

= 4 . 9

= 36

⇒ AH = 6

Tứ giác AEHF có:

∠HEA = ∠FAE = ∠AFH = 90⁰

⇒ AEHF là hình chữ nhật

⇒ EF = AH = 6

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)

hay AH=2,4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

28 tháng 7 2021

a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:

\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\Rightarrow AC=20\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\left(cm\right)\)

b) tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AH.HB=HE.AB\Rightarrow HE=\dfrac{AH.HB}{AB}=\dfrac{12.9}{15}=\dfrac{36}{5}\left(cm\right)\)

b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=25^2-15^2=400\)

hay AC=20(cm)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)