K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBHA\(\sim\)ΔBAC(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)

hay \(BA^2=BH\cdot BC\)

b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có 

\(\widehat{ICH}\) chung

Do đó: ΔCHI\(\sim\)ΔCKB(g-g)

Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)

hay \(CH\cdot CB=CK\cdot CI\)

a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có

góc KCB chung

=>ΔCKB đồng dạng với ΔCHI

=>CK/CH=CB/CI

=>CK*CI=CH*CB=CA^2

b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

góc KBC chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BD*BK=BH*BC=BA^2

c: BA^2=BD*BK

BA=BM

=>BM^2=BD*BK

=>ΔBMD vuông tại M

=>góc BMD=90 độ

d: SỬa đề: EA/EB*NB/NC*FC/FA

=NA/NB*NB/NC*NC/NA

=1

a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{AHB}\) chung

Do đó: ΔBHA∼ΔBAC(g-g)

b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có

\(\widehat{HCI}\) chung

Do đó: ΔCHI∼ΔCKB(g-g)

\(\Rightarrow\frac{CH}{CK}=\frac{CI}{CB}\)

hay \(CH\cdot CB=CK\cdot CI\)(đpcm)

c) Xét ΔCKB vuông tại K và ΔDHB vuông tại H có

\(\widehat{CBK}\) chung

Do đó: ΔCKB∼ΔDHB(g-g)

\(\frac{BK}{BH}=\frac{BC}{BD}\)(các cặp cạnh tương ứng tỉ lệ)

hay \(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)(cmt)

\(\widehat{HBK}\) chung

Do đó: ΔBHK∼ΔBDC(c-g-c)

\(\widehat{BHK}=\widehat{BDC}\)(hai góc tương ứng bằng nhau)

9 tháng 5 2021

a, Xét △BHA và △BAC có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△BHA∼△BAC (g.g)

⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ BA2=BH.BC

b, Xét △IHC và △BKC có:

∠BKC=∠IHC (=90o), ∠KCB chung

=> △IHC∼△BKC (g.g)

⇒ \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\) ⇒ CH.CB=CI.CK

 

9 tháng 5 2021

a)xét △BHA và△BAC:

- AB chung

-góc B chung

- góc AHB=góc BAC

⇒△BHA đồng dạng với △BAC

 

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạngvới ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

goc HBD chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BH/BD=BK/BC

=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD