Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
Bạn ơi giúp mình giải hết bài này đc ko
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt AC tại K.
a) So sánh AK và KE.
b) Chứng minh EK vuông góc BC.
c) Chứng minh: BK là đường trung trực của đoạn thẳng AE
b: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
A C B E K I T
a) Xét \(\Delta\)ACE và \(\Delta\)KCE có: CE chung; ^ACE = ^KCE ( CE là phân giác ^ACB); ^EAC = ^EKC = 90o
=> \(\Delta\)ACE = \(\Delta\)KCE ( cạnh huyền - góc nhọn ) (1)
=> CA = CK
b) (a) => C thuộc đường trung trực của AK
(1) => EA = EK => E thuộc đường trung trực của AK
=> CE là đường trung trực của AK
c) Xét \(\Delta\)ACB có ^A = 90o ; ^C=60o => ^B = 30o
=> ^EBK = 60o
Mặt khác: ^KCE = ^ACE = ^ACB : 2 = 30o
=> ^EBC = ^ECB
=> \(\Delta\)BEC cân tại E
d) Gọi T là giao điểm của CA và BI
Xét \(\Delta\)TCB có BA vuông CT; CI vuông TB
mà CI cắt BA tại E
=> E là trực tâm của \(\Delta\)TCB
=> TE vuông BC mà EK vuông BC
=> T; E; K thẳng hàng
=> CA; KE; BI đồng quy tại T
Hình ko biết vẽ
a/ Xét hai tam giác vuông ABI và EBI có:
góc ABI = góc EBI (BI là pg góc ABC)
BI: cạnh chung
=> tam giác ABI = tam giác EBI
=> BA = BE
Mà góc ABC = 600
=> tam giác BAE đều.
b/ Ta có: tam giác ABC vuông tại A
=> góc B + góc C = 900
hay 600 + góc C = 900
=> góc C = 300
Ta lại có: BI là pg góc ABC
=> góc ABI = góc IBC = 600 / 2 = 300
=> góc IBC = góc ICB = 300
=> tam giác IBC cân tại I
Mà IE là đường cao của tam giác IBC
=> IE cũng là trung tuyến của tam giác IBC
=> EB = EC (đpcm)
c/ Trong tam giác ABI vuông tại A
=> góc A > góc I
=> IB > AB
Trong tam giác ICE vuông tại E :
=> góc E > góc I
=> IC > EC
Ta có: IB > AB; IC > EC
=> IB + IC > AB + EC (đpcm).
d/ Ta có: BM là đường cao của tam giác BKC
Ta có: CA là đường cao của tam giác BKC
Mà BM cắt CA tại I
=> I là trực tâm của tam giác BKC
KE là đường cao còn lại của tam giác BKC (KE vuông góc BC)
=> I thuộc KE
=> K; I; E thẳng hàng.
A B C D E K I M N
a) Xét 2 tam giác ABD và EBD vuông tại A và C có:
BD:cạnh chung
ABD=EBD( vì BD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
b)\(\Rightarrow AD=DE\)
Mà DE <DC( vì cạnh góc vuông<cạnh huyền)
\(\Rightarrow AD< DC\left(dpcm\right)\)
c) Vì AD=DE và AK=KC(cmt)
\(\Rightarrow\Delta AKD=\Delta ECD\)(2 cạnh góc vuông)
\(\Rightarrow\widehat{ADK}=\widehat{EDC}\)( 2 góc tương ứng)
Mà ADE+EDC=180 độ
\(\Rightarrow KDA+ADE=180^0\)
\(\Rightarrow KDE=180^0\)
\(\Rightarrow K,D,E\)thẳng hàng
d) Gọi \(IM\perp AB;IN\perp AC\)
Xét tam giác ABC có M là trung điểm của AB và IM//AC
\(\Rightarrow I\)là trung điểm của BC ( theo tính chất đường trung bình trong tam giác)
Phần b là mà DE<DC vì cạnh góc vuông nhỏ hơn cạnh huyền nha bạn
Cho tam giác ABC vuông ở C có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB ( K thuộc AB ). Kẻ BD vuông góc với tia AE ( D thuộc AE). Chứng minh :
- AC=AK và AE vuoogn góc với CK
- KA=KB
- EB>AC
- Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
M.n giúp mình nha :))) Cảm ơn nhiều ^^