K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

13 tháng 11 2021

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DB

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//DC 

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

hay AI=IM

Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay DI//EM

Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

Suy ra: AI=IM

Xét ΔAEM có 

D là trung điểm của AD(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

\(\Leftrightarrow EM=2\cdot DI\)

\(\Leftrightarrow DC\cdot\dfrac{1}{2}=2\cdot DI\)

hay DC=4DI(Đpcm)

10 tháng 7 2021

Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và EM=DC2EM=DC2(Định lí 2 về đường trung bình của tam giác)

hay DI//EM

Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)

Suy ra: AI=IM

Xét ΔAEM có 

D là trung điểm của AD(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: DI=EM2DI=EM2(Định lí 2 về đường trung bình của tam giác)

⇔EM=2⋅DI⇔EM=2⋅DI

⇔DC⋅12=2⋅DI⇔DC⋅12=2⋅DI

hay DC=4DI(Đpcm)

a) Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 2 về đường trung bình của tam giác)

hay AI=IM(đpcm)

c) Xét ΔAEM có 

D là trung điểm của AE(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà \(EM=\dfrac{DC}{2}\)(cmt)

nên \(DI=\dfrac{\dfrac{DC}{2}}{2}=\dfrac{DC}{4}\)

hay DC=4DI(Đpcm)

19 tháng 7 2021

https://hoc24.vn/cau-hoi/.1268710028493

Giúp mình cái này 

 

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:A, IP/OA=IB/OBB,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:

A, IP/OA=IB/OB

B, IP/IS=IB/ID*OD/OB

C, IP/IS=IQ/IR

3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

1

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

a: AE+EC=AC

nên AE=15-9=6(cm)

Xét ΔABC có 

AD/AB=AE/AC=2/5

Do đó: DE//BC

b: Xét ΔABM có DI//BM

nên DI/BM=AD/AB

=>DI/MC=2/5(1)

Xét ΔACM có IE//CM

nên IE/CM=AE/AC=2/5(2)

Từ (1) và (2) suy ra DI=EI

hay I là trung điểm của DE