K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

(a)đi pua cc" và song song với 2 đt AH,CB'

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

0
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Trong các mệnh đề sau đây, mệnh đề nào là đúng ? a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P) c) Gọi \(\Delta\) là đường vuông góc chung của...
Đọc tiếp

Trong các mệnh đề sau đây, mệnh đề nào là đúng ?

a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b

b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P)

c) Gọi \(\Delta\) là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(a,\Delta\right)\) và \(\left(b;\Delta\right)\)

d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b

e) Đường vuông góc chung \(\Delta\) của hai đường chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia

1
31 tháng 3 2017

a) Sai, đúng là "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥a và Δ ⊥b"

b) Đúng

c) Đúng

d) Sai

e) Sai

31 tháng 3 2017

Hướng dẫn.

(h.3.21)

a)

=> AB ⊥ CD.
b)

Suy ra

Ta có => AB ⊥ MN.

Chứng minh tương tự được CD ⊥ MN.


 

Câu 1 : Tìm mệnh đề sai trong các mệnh đề sau đây ? A. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm bất kỳ trên đường thẳng a đến một điểm bất kỳ trên đường thẳng b B. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường này và (P) vuông góc với đường kia C. Khoảng...
Đọc tiếp

Câu 1 : Tìm mệnh đề sai trong các mệnh đề sau đây ?

A. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm bất kỳ trên đường thẳng a đến một điểm bất kỳ trên đường thẳng b

B. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường này và (P) vuông góc với đường kia

C. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kì trên mặt hẳng này đến mặt phẳng kia

D. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kì thuộc a tới mặt phẳng (P)

Câu 2 : Cho hình lập phương ABCD.A1B1C1D1 . Gọi \(\alpha\) là góc giữa hai mặt phẳng (A1D1CB) và (ABCD) . Chọn khẳng định đúng trong các khẳng định sau ?

A. \(\alpha=45^0\) B. \(\alpha=30^0\) C. \(\alpha=60^0\) D. \(\alpha=90^0\)

Câu 3 : Cho hình hộp chữ nhật ABCD.A'B'C'D' . Chọn mệnh đề sai trong các mệnh đề sau :

A. Khoảng cách giữa đường thẳng A'D và (BCC'B) bằng BD

B. Khoảng cách giữa hai đường thẳng A'D' và BD bằng AA'

C. Khoảng cách giữa hai mặt phẳng (ABB'A' ) và ( CDD'C' ) bằng BC

D. Khoảng cách từ điểm A' đến mặt phẳng (ABCD) bằng AA'

Câu 4 : Cho hình thang vuông ABCD vuông ở A và D , AD = 2a . Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD = \(a\sqrt{2}\) . Tính khoảng cách giữa đường thẳng DC và (SAB)

A. \(a\sqrt{2}\) B. \(\frac{a}{\sqrt{2}}\) C. \(\frac{2a}{\sqrt{3}}\) D. \(\frac{a\sqrt{3}}{3}\)

Câu 5 : Trong lăng trụ đều , khẳng định nào sau đây sai ?

A. Các mặt bên là những hình thoi

B. Các mặt bên ;à những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy

C. Đáy là đa giác đều

D. Các cạnh bên là những đường cao

Câu 6 : Cho hình chóp S.ABC có SA vuông góc (ABC) . Góc giữa SB với (ABC) là góc giữa :

A. SB và AB B. SB và BC C. SB và AC D. SB và SC

Câu 7 : Cho hình hộp chữ nhật ABCD.A'B'C'D' . Khi đó , véc tơ bằng véc tơ \(\overrightarrow{AB}\) là véc tơ nào dưới đây ?

A. \(\overrightarrow{B^'A^'}\)

B. \(\overrightarrow{D^'C^'}\)

C. \(\overrightarrow{CD}\)

D. \(\overrightarrow{BA}\)

Câu 8 : Cho hình chóp S.ABC có ABC là tam giác vuông tại B và \(SA\perp\left(ABC\right)\) . Gọi AH là đường cao của tam giác SAB , thì khẳng định nào sau đây đúng .

A. \(AH\perp SA\) B. \(AH\perp BC\) C. \(SC\perp AC\) D. \(AB\perp AC\)

Câu 9 : Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. a2

Câu 10 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết SA = SC , SB = SD . Khẳng định nào sau đây là sai ?

A. \(SO\perp\left(ABCD\right)\) B. \(SO\perp AC\) C. \(SO\perp BD\) D. \(SO\perp SA\)

Câu 11 : Cho tam giác ABC vuông cân tại A và BC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SA và (ABC)

A. 300 B. 450 C. 600 D. 900

Câu 12 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật , cạnh bên SA vuông góc với mặt phẳng đáy . Gọi AE , AF lần lượt là đường cao của tam giác SAB và tam giác SAD . Khẳng định nào dưới đây là đúng ?

A. \(SC\perp\left(AFB\right)\) B. \(SC\perp\left(AEC\right)\) C. \(SC\perp\left(AEF\right)\) D. \(SC\perp\left(AED\right)\)

Câu 13 : Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , mặt bên SBC là tam giác cân tại S , SB = 2a , \(\left(SBC\right)\perp\left(ABC\right)\) . Gọi \(\alpha\) là góc giữa hai mặt phẳng (SAB) và (SAC) , tính \(cos\alpha\)

A. \(cos\alpha=-\frac{3}{7}\) B. \(cos\alpha=\frac{4}{7}\) C. \(cos\alpha=\frac{3}{7}\) D. \(cos\alpha=\frac{2}{7}\)

Câu 14 : Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D' có cạnh đáy bằng a , góc giữa hai mặt phẳng (ABCD) và (AC'B) có số đo là 600 . Khi đó cạnh bên của hình lăng trụ bằng

A. \(a\sqrt{3}\) B. a C. 2a D. \(a\sqrt{2}\)

Câu 15 : Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a , gọi O là tâm của đáy ABCD . Khoảng cách từ O đến mặt phẳng (SBC) bằng ?

A. \(\frac{3a}{2}\) B. \(\frac{a\sqrt{6}}{3}\) C. \(\frac{a\sqrt{6}}{6}\) D. \(\frac{a\sqrt{3}}{6}\)

Câu 16 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông , M là trung điểm của SB . Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABCD) , biết SD = \(2a\sqrt{5}\) , SC tạo với mặt đáy (ABCD) một góc bằng 600 . Khoảng cách từ A đến mp (SCD) bằng ?

A. \(\frac{2a\sqrt{15}}{\sqrt{79}}\) B. \(\frac{a\sqrt{15}}{\sqrt{19}}\) C. \(\frac{2a\sqrt{15}}{\sqrt{19}}\) D. \(\frac{a\sqrt{15}}{\sqrt{79}}\)

help me !!!!!!! LÀM CHI TIẾT GIÚP MÌNH VỚI Ạ !!!

5
NV
12 tháng 6 2020

16.

Đặt cạnh của đáy là x

\(DM=\sqrt{AD^2+AM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)

\(CM=\sqrt{BC^2+BM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)

\(\Rightarrow DM=CM\Rightarrow\Delta_vSMD=\Delta_vSMC\)

\(\Rightarrow SC=SD=2a\sqrt{5}\)

\(SM\perp\left(ABCD\right)\Rightarrow\widehat{SCM}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCM}=60^0\)

\(\Rightarrow\left\{{}\begin{matrix}CM=SC.cos60^0=a\sqrt{5}\\SM=SC.sin60^0=a\sqrt{15}\end{matrix}\right.\) \(\Rightarrow AB=x=\frac{2CM}{\sqrt{5}}=2a\)

Gọi N là trung điểm CD \(\Rightarrow CD\perp\left(SMN\right)\)

\(AM//CD\Rightarrow AM//\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)

Từ M kẻ \(MM\perp SN\Rightarrow MH\perp\left(SCD\right)\Rightarrow MH=d\left(H;\left(SCD\right)\right)\)

\(MN=AB=2a\)

\(\frac{1}{MH^2}=\frac{1}{SM^2}+\frac{1}{MN^2}\Rightarrow MH=\frac{SM.MN}{\sqrt{SM^2+MN^2}}=\frac{2a\sqrt{15}}{\sqrt{19}}\)

NV
12 tháng 6 2020

14.

Do \(\widehat{C'BC}\) là góc giữa (ABCD) và (ABC') nên \(\widehat{C'BC}=60^0\)

\(\Rightarrow CC'=BC.tan60^0=a\sqrt{3}\)

15.

Gọi H là trung điểm BC \(\Rightarrow OH\perp BC\)

Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)

\(\Rightarrow BC\perp\left(SOH\right)\)

Từ O kẻ \(OK\perp SH\Rightarrow OK\perp\left(SBC\right)\Rightarrow OK=d\left(O;\left(SBC\right)\right)\)

\(OH=\frac{1}{2}AB=\frac{a}{2}\) ; \(AC=a\sqrt{2}\Rightarrow OA=\frac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2-OA^2}=\frac{a\sqrt{2}}{2}\)

\(\frac{1}{OK^2}=\frac{1}{SO^2}+\frac{1}{OH^2}\Rightarrow OK=\frac{SO.OH}{\sqrt{SO^2+OH^2}}=\frac{a\sqrt{6}}{6}\)